Any nation’s development may be predicted based on the scale to which it has enhanced its facilities in various modes of transportation. The increase in traffic and population, as well as the rapid expansion of railway networks, were all caused by the worldwide construction of new railways as form of improved transportation. The extension has caused a lot of change, both in how different bridges are used and how many of them are built. Box-girder bridges are becoming more common in modern engineering because they are lighter and has high torsional and flexural rigidities than other types of bridges and can span longer distances. Moreover, the closed cellular part of the box girder makes structure look better than open-web systems. Box-girder bridges are geometrically more complicate and aesthetically pleasing structure, therefore they provide significant challenges for engineers in terms of research and design. A thorough investigation into the analysis of thin-walled box-girder bridges has been published in the following literatures.
Begum Z (Begum, 2010) investigated the behaviour of steel box-girder bridges using the publicly available FEM software ANSYS. The author examined the performance of straight and curved box- girders and compared the findings of the analytical model using the software DESCUS-II. A comparison of the findings produced using DESCUS-II and the ANSYS finite element model revealed that the two sets of results were in good agreement. Zhu et al. (Zhu false, 2016) successfully analysed the vibrations of thin-walled rectangular beams using the finite element method. Using Hamilton’s principle, the dynamic governing equations were derived, and then the finite element implementation was approximated. Finally, numerical cases were presented to demonstrate this theory’s viability. Gupta and Kumar (Gupta & Kumar, 2018) used the widely available FEM software CSiBridge to calculate the flexural behaviour of curved box-girder bridges. The purpose of this study was to determine how simple single-cell and skew-curved concrete box-girder bridges respond to bending. The author studied the influence on the behaviour of the bridge due to the change in skewness angle. A 3D finite element model was made using CSiBridge software and analysed. It was seen that the skewness of the bridge improved its effectiveness in various response results. Hamza et al. (Hamza false, 2019) evaluated the ultimate load capacity of a horizontally curved-box steel beam using a non-linear finite element technique. The results showed that the satisfactory breadth-to- depth ratio was around 0.3 and 0.4 when the angle of curvature was ranging from 0 & 90 degrees and between 0.4 and 0.5 when the angle of curvature was between 90o and 1800. Also, the analysis indicated that the reduction in bearing load capacity with increasing beam curvature is the same no matter what the b/d ratio is. Preeti et al. (Agarwal false, 2022) used CSiBridge software to simulate and analyse a single-cell and double-cell rectangle-shaped box-girder bridge under the influence of varied IRC loadings. Stress and deflection limits were examined for various span-depth ratios. The author performed static and free vibration studies and compared the results to verify the applicability of the modelling procedure. Lizhong et al. (Jiang false, 2022) used ANSYS software to investigate the dynamic influence of a train on the seismic action of a track system and a bridge. In this research, a combined finite element model of a bridge with a high-speed railway vehicle was developed by taking into account a simply-supported beam element bridge with the China Railway Track System (CRTS) II plate and a high-speed train. The model’s accuracy was technically and experimentally confirmed. Taking into account the unpredictability of the vibration, the impact of the train body on the earthquake-exposed bridge model was examined. In addition, the amount of consequence of a moving train body on the seismic effect of bridge structures by varying the heights of piers was investigated. The results demonstrated that the train’s dynamic impact considerably decreased the seismic effects of supports and piers and that the effect itself reduced as the height of the pier increased. Jiang Hui et al. (Hui false, 2021) performed dynamic and vibrational analysis on the CRTS II ballastless track system. An improved coupling dynamic model of a bridge having a ballastless track system (CRTS III) and a high-speed train was developed using ABAQUS. The research object was a high-speed railway simply-supported box-girder bridge with multiple spans over an active strike-slip fault. The validity of the established model was fully examined. After simulating the lateral ground movements in a defective fissure zone, short-term dynamic evaluations of the high-speed train-track-bridge coupling system under 3D earthquake excitations were conducted. Guolong Li et al. (Li false, 2022) suggested a dynamic analysis method for vertically coupled vehicle–track–substructure under forced excitation and used the method to study how local fastener failure affects the dynamic effect of the vehicle and track. The failure of a fastener was simulated using methods that cancel the forced vibration transmission, which means that the interaction between the substructure and rail at that point was not taken into account. It was found that the local fastener failure had a small effect on how the substructure and car-body shook, but it had a big effect on how the wheel and rail shook. Chirag Garg (Chirag Garg & Kumar, 2014) studied the effects on deflection and stress contour by changing the basic shape, like varying the length, width, and thickness of the bridge, using SAP2000 software. It was seen that the modified one with longer overhanging beams and thicker joints is the more sturdy structure of the different cases for this box shape. This gave more rigidity at the fixed parts and reduced the stresses on the whole beam, making it more stable as it reduced the amount of bending force at the fixed end. Muthanna Abbu et al. (Abbu false, 2013) performed 3D Finite Element analysis of the combined box-girder bridge to predict the actual bridge response using ANSYS software. A field test is used to compare the predictions of several FE models to the results of the test. Experiments show the importance of complete shear connections, which are necessary in combined box-girders and are one of the most crucial considerations to think about. Both vertical displacements and normal stresses predicted numerically at key sections are quite similar to the results of tests. MTR Jayasinghe (Ranasinghe & Jayasinghe, 2016) provided a simple design technique that confines the design iterations as much as possible to reduce the number of computations needed. The rules for figuring out the cross-sectional sizes have also been talked about. A full example of how to design a three-span continuous bridge has been given. Nancy Hammad et al. (Hammad false, 2020) presented an effective and genuine computational tool to analyse and arrive at the optimum design of a pre-stressed box-girder bridge with a high-speed railway vehicle. The design and analysis of the simply supported box-girder bridge are accomplished using CsiBridge and a finite element software, SAP 2000, as per Eurocode and the Egyptian Code of Practice. Anita M. Jagid et al. (Jangid & Bhaskar, 2018) examined static and dynamic behaviour while demonstrating the linear dynamic response of trapezoidal and rectangular box-girder bridge decks. Using FEM-based software, response spectrum analysis has been carried out. The results showed that the bending moment, shear forces, deflection, and time period of a trapezoidal box-girder increase as the length of the span goes up, while the spectral acceleration and fundamental frequency go down. The study showed that the trapezoidal box-girder bridge superstructures were more secure than rectangular-shaped girder bridge superstructures. Virajan Verma et al. (Verma & Nallasivam, 2021) made a model of the thin-walled steel curved box-girder bridge and looked at its different response variables when it was loaded by the Indian Railway using 1D beam elements and MATLAB code. The analytical results, which were calculated using MATLAB code based on finite elements, were shown in the form of different stress results caused by different combinations of Indian Railway loads. The effect of changes in radius and span length on the different response parameters has also been looked into. R. Manjula et al. (Manjula & Amrutha, 2021) used the Indian Road Congress (IRC) requirements for trapezoidal and rectangular sections to analyse three different types of box-girders with SAP2000. Researchers have looked at how box-girders with the same depth but different widths behave. Using SAP2000, a parametric study is done for different reactions like axial force, bending moments, and shear force.
From the above mentioned literatures, it was seen that the static analysis of the model was required for different combinations of Indian railway loadings. Moreover, in most of the studies, the models were solved numerically using 1D beam elements. A study of different combinations of loads was needed in order to find the worst case possible.
Vehicle loads are one of the most significant external excitations of bridges and are critical in a variety of load combinations. Therefore, comprehensive research is required for the evaluation of a bridge that is susceptible to damage and is in danger of collapsing. The present study is limited to the non-closed form of the FEM static analysis of the model. However, this research will aid designers in obtaining relevant information for the further analysis of free vibration and the dynamic analysis of the model. To overcome the limitations mentioned above, the following areas of the concept will be studied:
-
A 3D FEM modelling procedure of a box-girder bridge loaded with different combinations of Indian Railway loading.
-
Static analysis of the above-modelled bridge using non-closed form-based ANSYS software.