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Abstract

Skew bridges with seat-type abutments are frequently unseated in earthquakes due
to large transverse displacements at their acute corners. It is believed these large
displacements are due to in-plane rotation of the superstructure. Lack of detailed
guidelines for modeling of skew bridges, many current design codes give empirical
expressions rather than theoretical solutions for the additional support length
required in skew bridges to prevent unseating. In this paper, a parametric study has
been carried out to study the influence of skew angle, aspect ratio and fundamental
periods of bridges on the additional support length requirements of single-span
bridges due to skew using a shake table experiment validated Simplified Method,
which is capable of simulating gap closure based on response spectrum analysis.
This method is developed based on the premise that the obtuse corner of the
superstructure engages the adjacent back wall during lateral loading and rotates
about this corner until the loading reverses direction. A design response spectrum
specified in AASHTO LRFD Specifications was employed to represent the design-level
earthquakes. The results show the additional length required to prevent unseating
due to skew increases with the skew angle in an approximately linear manner when
the angle is less than a critical value and decreases for angles above this value. This
critical skew angle increases with the aspect ratio approximately in a linear manner
and shows negligible dependence on the fundamental periods of the bridges, and
combination of span length and width. In addition, the critical skew angle varies
between 58° and 66°, when the aspect ratio is varied from 3.0 to 5.0. The results also
show that the empirical formulas for minimum support length requirements of skew
bridges in current codes and specifications can not accurately reflect the influence of
skew.

Keywords: Skew bridges, Simplified method, Support length requirements, Girder
unseating
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1 Introduction
Due to geometric and space constraints, skew bridges are commonly used as overpasses

in highway interchanges or intersections, especially in urban areas. However, skew brid-

ges with seat-type abutments are frequently unseated in earthquakes due to large trans-

verse displacements in their acute corners (Buckle 1994; Kawashima et al. 2011; Buckle

et al. 2012; Chen 2012; Kawashima 2012). For example, during the 1994 Northridge

earthquake in Southern California, unseating in the acute corners was observed for the

Gavin Canyon Under-crossing shown in Fig. 1, due to in-plane rotation of the super-

structure (Buckle 1994). The most common explanation for this rotation is eccentricity

between the centers of mass and stiffness, but this rotation has also been observed in

perfectly symmetric bridges. In these cases, abutment pounding followed by rotation

about one of the obtuse corners has been suggested as the unseating mechanism (Wu

2016; Wu et al. 2019a; Wu et al. 2019b).

In view of the frequent damage of the skew bridges during the past major earth-

quakes, intensive numerical study has been performed by a number of researchers to

characterize seismic response of skew bridges, and to develop countermeasures to miti-

gate or eliminate the damage. The evolution of numerical modeling techniques plays

an important role in understanding and prediction of seismic response of skew bridges

(Ghobarah and Tso 1974; Maragakis 1985; Wakefield et al. 1991; Abdel-Mohti 2009;

Maleki 2005; Meng and Lui 2002; Kaviani 2011; Kaviani et al. 2012; Shamsabadi 2007;

Wu 2019a; Wu 2019b; Li et al. 2020). These techniques range from a simple beam

model (Ghobarah and Tso 1974) to more sophisticated three-dimensional finite elem-

ent model (Shamsabadi 2007). On the other hand, the advancement in the shake table

tests has worked as a direct method to uncover the phenomena underling the compli-

cated response of skew bridges (Kun et al. 2017; Wu et al. 2017; Wu et al. 2019a; Wu

et al. 2019b).

Fig. 1 Unseating of Gavin Canyon Bridge in the 1994 Northridge Earthquake
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Findings in literature have led to the increased understanding of seismic response of

skew bridges, which is reflected in the following aspects. First, the unseating mechan-

ism has been updated as follows. During the earthquake action, the skew bridges will

first close the expansion gap, rotate around one of its obtuse corner and then rebound

off the abutment and continue to rotate in the same direction (Buckle et al. 2012;

Priestley et al. 1996; Wu 2019a). Second, seismic pounding will play an important role

in seismic response of skew bridges and hence should be considered in the numerical

modeling (Maragakis 1985; Maragakis and Jennings 1987; Bjornsson 1997; Shamsabadi

and Kapuskar 2006; Shamsabadi 2007; Abdel-Mohti and Pekcan 2013a; Abdel-Mohti

and Pekcan 2013b; Kwon and Jeong 2013; Catacoli et al. 2014; Deepu et al. 2014; Zakeri

and Amiri 2014, Wu et al. 2021). Third, the friction along the contact surface of seismic

collision will also play an important role in the response of skew bridges, which should

not be neglected in the numerical analysis (Dimitrakopoulos 2010; Wu et al. 2019b;

Wu and Buckle 2020). Furthermore, due to the significant in-plane rotation, skew brid-

ges will subject to larger support length requirements than their straight counterparts

(Jennings et al. 1971; Maragakis 1985; Buckle 1994; Mitchell et al. 1995; Bjornsson

1997; Kawashima et al. 2011; Buckle et al. 2012; Wu 2019b).

With the advancement in the numerical modeling, accurate prediction of the seismic

response of skew bridges may be achievable through 3-D dynamic analysis on rigorous

finite element models (Wu and Buckle 2020). However, this type of modeling technique

may not be suitable for engineering practitioners during the preliminary design of brid-

ges due to consideration of computational effort, modeling complexity and determin-

ation of the error-prone parameters in the physics-based numerical models. Given this,

researchers have instead explored simplified methods to estimate the response of skew

bridges. For example, a response-spectrum-analysis-based hand-method was proposed

by Kalantari and Amjadian (2010) for dynamic analysis of skew highway bridges. It was

found that the proposed method is able to accurately estimate the dynamic characteris-

tics and bridge responses. However, the proposed method does not consider the seis-

mic collision between the bridge and abutment. Therefore, its accuracy will be

compromised when pounding occurs during strong earthquakes. Wu et al. (2019a) de-

veloped a simplified method to estimate the additional support length demands of brid-

ges due to skew based on the unseating mechanism developed based on a shake table

experiment, which is able to consider the bridge-abutment interaction. In that method,

the seismic response of skew bridges under earthquake action is computed based on re-

sponse spectrum analysis by simplifying the bridge system as a single-degree-of-free-

dom system. The accuracy of the developed method was also demonstrated by Wu

et al. (2019a) by comparing the results with the dataset from the shake table

experiment.

Even the modeling techniques of skew bridges have been improved significantly, due

to the complexity in the response induced by seismic pounding, no consensus has been

reached for the numerical modeling of skew bridges. As a consequence, despite the

common occurrence of this type of damage, current design codes and specifications do

not give explicit procedures to estimate the additional support length in skew bridges,

but rely instead on empirical expressions. Without validation by rigorous numerical

and experimental studies, the conservatism and non-conservatism of these empirical

equations are still unknown. In this study, a comprehensive parametric study has been
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carried out to investigate the additional support length requirements of single-span

bridges due to skew during design-level earthquakes using the Simplified Method pro-

posed by Wu et al. (2019a). The focus on single-span skewed bridges is in view of the

frequent unseating and collapse of this type of bridges, as seen in the reconnaissance

reports of recent major earthquakes, such as the 2008 Wenchuan earthquake (Chen

2012) and the 2010 Chile Maule earthquake (Buckle et al. 2012). Parameters of interest

include skew angles, fundamental periods of the bridges, span length and width, and as-

pect ratio (span length/width). In addition, the empirical equations for the minimum

additional support length requirements of bridges due to skew specified in various

codes and specifications are also evaluated.

2 Simplified method
The Simplified Method used to estimate the maximum support length requirements of

skew bridges was developed by Wu et al. (2019a) and had been validated by a compre-

hensive dataset from a shake table experiment on a family of skew bridges (Wu et al.

2019a). Details of the method and the corresponding validation process are referred to

Wu et al. (2019a). Brief introduction of the method is introduced here for the readers’

reference. Assumptions are made in the Simplified Method as follows.

� Rigid superstructure

� No slip along the face of abutment when the gap is closed and the back wall

engaged

� Ground motion is applied in transverse direction only (y-direction in Fig. 2)

� Rigid abutment

� No transverse shear keys, and

� Rebound of superstructure away from abutment is ignored

Under these assumptions, a skew superstructure will undergo two different cases of

motions during the earthquake action.

Fig. 2 Movement of the superstructure of a skew bridge during transverse earthquake action
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2.1 Case 1

When the skew angle is small and the transverse gap is large (i.e. gt in Fig. 2), under

the transverse earthquake action, the displacement of the superstructure is not ad-

equate to close the transverse gap. Hence, no gap closure and rotation of the bridge is

expected in this case.

2.2 Case 2

When the skew angle is medium or large, under the transverse earthquake action, the

superstructure will move transversely to close the gap and rotate around one of the

obtuse corners. In this case, the acute corners at the opposite site will experience the

largest support length demand (i.e. upper right corner in Fig. 2).

For both cases, the maximum support length demands of bridges due to skew N(θ)

can be estimated by simplifying the bridge as a single-degree-of-freedom system

(SDOF). For each case, the N(θ) (see Fig. 2) is computed based on the following

procedures.

2.3 Case 1

In this case, the earthquake motion is not adequate to close the transverse gap and the

bridge superstructure moves transversely. That is: D < gt where D is the transverse dis-

placement of the center mass of the superstructure and gt is the transverse gap (see Fig.

2). The bridge system can be simplified as a SDOF system: the mass of superstructure

is supported on a series of springs representing the substructure system. Consequently,

the maximum support length demand of the bridge due to skew N(θ) can be computed

by response spectrum analysis and the equations are:

Tt ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffi
m=k1

p
ð1Þ

Feq ¼ mSa ð2Þ

Δy ¼ Feq=k1 ð3Þ

N θð Þ ¼ Δysinθ ð4Þ

where Tt is the period of the bridge system in the transverse direction; m is the total

mass of superstructure; k1 is the total transverse translational stiffness of the substruc-

ture system; Sa is the acceleration response spectrum at period of Tt; Feq is the equiva-

lent maximum force applied to the superstructure; Δy is the displacement of the

superstructure in the transverse direction and θ is the skew angle (°) as shown in Fig. 2;

2.4 Case 2

In this case, the earthquake motions are strong enough to force the superstructure to

first close the gap and then rotate around one of the obtuse corners, i.e. D > gt. As a re-

sult, the adjacent acute corner of the opposite site will have the largest support length

demand. The transverse force-displacement relationship of the bridge system at the

center mass is a bilinear curve, as shown in Fig. 3, where the first slope k1 represents

the superstructure moves transversely to close the gap while the second slope k2 means

the superstructure rotates about the obtuse corner. Since D > gt, the transverse displace-

ment of the center mass will fall within the second slope k2. Based on this force-
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displacement relationship, the bridge system can also be simplified as a SDOF system

with an effective stiffness keff (see Fig. 3) to compute the maximum support length de-

mand N(θ) of the skew bridge at the adjacent acute corner of the opposite side. With

this simplification, the equations to compute N(θ) are as follows.

First, the effective period of the system can be computed by Eqs. 5, 6, 7, 8, 9 and 10.

keff ¼ k2 þ k1 − k2ð Þgt=D ð5Þ

gt ¼ gap=sinθ ð6Þ

k2 ¼ Jd=d
2 ð7Þ

d ¼ 0:5 L − Btanθð Þ ð8Þ

JD ¼
X

x2ky þ y2kx
� � ð9Þ

Teff ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m=keff

q
ð10Þ

where k2 is the equivalent transverse stiffness of the bridge when it rotates around the

obtuse corner; keff is the effective transverse stiffness of the bridge system; gap is the ex-

pansion gap size normal to the abutment (see Fig. 2); Jd is the rotational stiffness of the

substructure system around the obtuse corner; d is the longitudinal distance from the

center of mass to the obtuse corner (see Fig. 2); L and B are the span length and width,

respectively; kx and ky are the shear stiffness of bearings in longitudinal and transverse

directions respectively and x and y are the longitudinal and transverse distances from

the bearing at each corner to the obtuse corner (i.e. rotation point), respectively.

When the effective period of the system is determined, the maximum rotation angle

α of the bridge is then computed based on the acceleration response spectrum. For ex-

ample, for a typical design response spectrum in AASHTO LFRD (2012) as seen in

Fig. 4, the α is computed in two different scenarios depending on the range value of

Fig. 3 Transverse force-displacement of the center of mass of a sing-span skewed bridge in case 2
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Teff. It is noted that the Teff of single-span skew bridges will be larger than T0 (see

Fig. 4), therefore, the derivation of N(θ) in case 2 is only given for Teff > T0.

Assumption a: when Teff ≥ TDS (i.e. Section I in Fig. 4).

In this case, the acceleration response spectrum coefficient Sa is inversely propor-

tional to the period of the structure and the maximum transverse displacement of the

center of mass D at the effective period is:

D ¼ g
4π2

SD1Teff ð11Þ

where SD1 is the spectral acceleration coefficient at the period of 1.0 s. Substitute Eqs.

(5) and (10) into Eq. (11), and obtain:

4π2k2D
2 þ 4π2 k1 − k2ð ÞgtD − g2S2D1m ¼ 0 ð12Þ

D can be explicitly solved from Eq. (12).

Assumption b: T0 ≤Teff < TDS (i.e. Section II in Fig. 4).

In this case, the design acceleration response spectrum falls in the plateau and

Sa = SDS. The maximum transverse displacement of the center mass D at the ef-

fective period is:

D ¼ mSDSg − k1 − k2ð Þgt
k2

ð13Þ

It is seen in Eqs. (11, 12, and 13), the maximum displacement of the center of mass

D is computed based on the assumption with respect to the Teff. Therefore, after the D

is computed, the assumption to Teff should be checked based on Eqs. (5, 6, 7, 8, 9 and

10). Then the maximum rotational angle α of the bridge is computed by:

Fig. 4 Typical design response spectrum in AASHTO LRFD Specifications (2012)
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α ¼ D − gt
d

ð14Þ

When the maximum rotation angle is determined, the maximum support length de-

mands N(θ) of the bridges due to skew can be computed based on the geometry shown

in Fig. 2.

N θð Þ ¼ gapþ L − Lcosαð Þcosθ þ Lsinαsinθ ð15Þ

Based on these equations, closed form solution for the maximum additional support

length demand N(θ) is obtainable for the AASHTO design earthquake response

spectrum.

Note that all of these procedures are for the single-span simply supported bridges.

To extend the procedures to multi-span bridges, the transverse force-displacement re-

lationship in Fig. 3 has to be updated, which is out-of-the-scope of current study.

2.5 Parametric study

It is known that parameters affecting the seismic performance of the skew bridges in-

clude skew angle, aspect ratio of superstructure (length to width ratio), soil-abutment

interaction, presence of shear keys, and intensity of ground motion, and so on (Kaviani

et al. 2012; Meng and Lui 2001). However, to quantify the influences of these parame-

ters highly depends upon the robustness of the numerical models. In this section, a

parametric study is carried out using the Simplified Method described above to investi-

gate the effect of skew angle, fundamental periods of the bridges, span length and

width, and the aspect ratio on additional support length demands of bridges due to

skew under the design-level earthquakes. For this purpose, the design acceleration re-

sponse spectrum specified in AASHTO LRFD Specifications (2012) was employed to

represent the design-level earthquakes.

2.6 Prototype bridges

The seed bridge used in the parametric study is the North Yankee Slough Bridge (a typ-

ical skew bridge in California), which is a single-span simply supported box-girder

bridge with span length of 35 m, width of 13.58 m and skew angle of 30°. Figure 5

shows its cross section. In order to investigate the effects of aspect ratios, span length

and width, two sets of dimensions were adapted from the seed bridge. In set 1, the

width was kept constant at 12.2 m, while the span was varied, and in set 2, the span (L)

was kept constant at 36.6 m while the width (B) was varied. In both sets, the same as-

pect ratio varied from 3.0 to 5.0 as shown in Table 1. The size of expansion gap for

Fig. 5 Cross section of the North Yankee Slough Bridge (unit: m)
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each configuration was designed based on the thermal expansion, as summarized in

Table 1. For each bridge configuration, the skew angle was varied from 1 to 70°, with

increments of 1° to study the skew effect.

It is assumed that all bridges are supported by elastomeric bearings and one under

each web of the girder. Due to the uncertainty in the bearing stiffness, the fundamental

translational period is assumed to vary from 0.7 s to 1.2 s for each configuration, a typ-

ical range for single-span, simply-supported bridges. Then the stiffness of each bearing

can be back calculated by the assumed fundamental translational period based on the

following equation.

k ¼ 4π2W

nT 2g
ð16Þ

where W is the weight of the superstructure; n is the total number of bearings; T is the

fundamental translational period, g is the gravitational acceleration = 9.8 m/s2.

2.7 Design response spectrum

The design response spectrum (DRS) in AASHTO LRFD Specifications (2012) was se-

lected for the prototype bridges, which assumes a rock site (Site Class B) with a peak

ground acceleration (PGA) of 0.471 g. The short-period spectral acceleration (Ss) for

the site is 1.135 g, and the long-period acceleration (S1) is 0.42 g. For Site Class B, the

site factors for Ss (Fa) and S1 (Fv) are both equal to 1.0 and thus SDS and SD1 are com-

puted as follows.

SDS ¼ FaSs ¼ 1:0� 1:135 ¼ 1:135 ð17Þ

SD1 ¼ FvS1 ¼ 1:0� 0:42 ¼ 0:42 ð18Þ

Therefore, the bridge is located in Seismic Zone 3 (0.3 g < SD1 ≤ 0.50 g) based on the

definition in Art. 3.10.6 of the AASHTO LRFD Specification (2012). The design re-

sponse spectrum for the prototype bridges is plotted in Fig. 6.

Table 1 Basic information of the prototype bridges in the parametric study

Case # L (m) B (m) L/B W (t) # of bearings Thermal
expansion (mm)

gap (mm) θ1 (°) θ2 (°)

Set 1 (constant width B = 12.2m)

1 36.6 12.2 3 505 12 8.8 13 20.9 69.1

2 42.7 12.2 3.5 678 12 10.2 19 17.4 72.6

3 48.8 12.2 4 833 12 11.7 19 15.0 75.0

4 54.9 12.2 4.5 1003 12 13.2 25 13.2 76.8

5 61 12.2 5 1187 12 14.6 25 11.8 78.2

Set 2 (constant length L = 36.6 m)

6 36.6 12.2 3 505 12 8.8 13 20.9 69.1

7 36.6 10.4 3.5 422 10 8.8 13 17.4 72.6

8 36.6 9.1 4 385 10 8.8 13 15.0 75.0

9 36.6 8.2 4.5 328 8 8.8 13 13.2 76.8

10 36.6 7.3 5 301 8 8.8 13 11.8 78.2
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2.8 Analysis results

The maximum additional support length due to skew N(θ) of each bridge configuration

with each fundamental period was estimated by the procedures of the Simplified

Method (SM) described above with the design acceleration response spectrum input in

the transverse direction. In this section, take the fundamental period of T = 0.9 s as a

typical example. It is noted that the results of the bridges with other fundamental pe-

riods show similar trend and are not presented here for simplicity. Figure 7 plots the

N(θ) against the skew angle θ for all bridge configurations with T = 0.9 s. Several obser-

vations are made in this figure.

First, for all bridge configurations, when the skew angle is very small such that the

gap does not close (Motion 1), the N(θ) increases linearly with skew angle. When the

skew angle is larger and the gap closes followed by rotation, the N(θ) continues to

Fig. 6 Design response spectrum used in the parametric study

Fig. 7 Additional support length demands N(θ) due to skew versus skew angles (T = 0.9 s)
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increase in a linear manner with skew angle but at a faster rate up to a specific skew

angle and at a lesser rate from this angle to a critical skew angle θcrit. When further in-

creasing the skew angle to exceed the critical skew angle, the N(θ) decreases. This indi-

cates that for each bridge configuration, there is a critical skew angle, where the

additional support length due to skew is the largest among all of skew angles. Second,

the critical skew angle varies with the aspect ratio of the bridge. Third, the set 1 bridges

have various initial slope for the N(θ). To be specific, the cases 2 (L/B = 3.5) and 3 (L/

B = 4.0) bridges have the same initial slope, while those of the cases 4 (L/B = 4.5) and 5

(L/B = 5.0) bridges are the same. In addition, all bridges in the set 2 have approximately

the same initial slope. It is interesting to note that in the set 1, the cases 2 and 3 bridges

have the same expansion gap size, and cases 4 and 5 bridges have the same gap size. In

the set 2, all bridges have the same expansion gap size. As explained in the develop-

ment of the SM, with small skew angles, the bridge will experience motion 1 without

gap closure. The difference in the expansion gap size will result in different skew angles

to close the gap and hence difference in the initial slope. Therefore, the observation

with respect to the initial slope is due to the difference in the size of expansion gap.

The decrease of N(θ) at large skew angles shown in Fig. 7 is mainly attributed to the

combination of the decrease of the eccentricity between the center of mass (C.M.) and

the center of stiffness (C.S.), i.e. d in Eq. (8) and the decrease of the rotational stiffness

around the center of stiffness, i.e. Jd in Eq. (9). To further explain this, take the case 1

as an example, as shown in Fig. 8. As seen in this figure, the d will decrease with skew

angle. The smaller distance d will result in smaller torque T around the center of stiff-

ness caused by the earthquake action, i.e. smaller external torque for in-plane rotation.

For the rotational stiffness Jd will also decrease with the skew angle, as seen in Fig. 9a.

Based on the derivation procedure of the Simplified Method, the combination of these

two factors will result in increase of in-plane rotation to the critical skew angle and

then decrease, as seen in Fig. 9b. As a result, the N(θ) will see the same trend based on

Eq. (15).

Figure 10 plots the comparison of the N(θ) of the bridge with the same aspect ratio

but with different combinations of the L and B. It is clearly seen that even with the

same aspect ratio, the bridges in the sets 1 and 2 still show difference in the N(θ). This

indicates that the N(θ) will be affected by the aspect ratio as well as the combinations

of the L and B.

Figure 11 plots the comparison of the N(θ) of the bridges with the same aspect ratio

of 4.0 in both sets 1 and 2 but with different fundamental periods. It is seen that the

same skew angle, the N(θ) always increases with the fundamental period of the bridge,

Fig. 8 Illustration of the eccentricity between the center of mass and center of stiffness d with different
skew angles (T = 0.9 s)

Wu et al. Advances in Bridge Engineering            (2021) 2:22 Page 11 of 19



regardless of the bridge in the sets 1 and 2. This indicates that the factor influencing

the N(θ) should also include the fundamental period T.

As noted in Fig. 7, for each bridge configuration, there is a critical skew angle θcrit
where the largest N(θ) occurs. Figure 12 shows the critical skew angle versus the aspect

ratio L/B for bridges with different fundamental periods. As seen in Fig. 12, for each

fundamental period, the θcrit increases with the aspect ratio approximately in a linear

manner, for both sets of bridges. In addition, the θcrit has slight difference when the

fundamental period varies from 0.7 s to 1.2 s. The largest difference is about 3°. There-

fore, the fundamental period has negligible influence on the critical skew angle. More-

over, for the same aspect ratio, the critical skew angles of the bridges in sets 1 and 2

Fig. 9 Parameter and response of the case 1 (L = 36.6 m, B = 12.2 m and L/B = 3.0). a Rotational stiffness Jd;
b computed in-plan rotation from the Simplified Method (T = 0.9 s)

Fig. 10 Comparison of the maximum additional support length demand due to skew N(θ) for prototype
bridges with the same aspect ratio but different combinations of L and B (T = 0.9 s)
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agree well with each other, indicating that the critical skew angle is mainly dependent

upon the aspect ratio of the bridge while has negligible dependence on the combination

of L and B.

Since the critical skew angle is insensitive to the fundamental periods and combin-

ation of L and B, while shows approximately linear dependence on the aspect ratio, lin-

ear regression analysis is then performed on the computed critical skew angles of the

two sets of bridges, as shown in Fig. 13. The results indicate that the critical skew angle

is related with the aspect ratio in the following equation.

θcrit ¼ 5:88
L
B

� �
þ 39:50 ð19Þ

2.9 N(θ) in current codes and specifications

In this section, the additional support length due to skew N(θ) specified current codes

and specifications are reviewed, including AASHTO LRFD Specifications (2012), AASH

TO Guide Specitifications, (2011) FHWA Seismic Retrofitting Manual for Highway

Fig. 11 Comparison of the maximum additional support length demand due to skew N(θ) for prototype
bridges with aspect ratio of 4.0 and different fundamental periods

Fig. 12 Critical skew angle versus aspect ratio
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Structures (Buckle et al. 2006) and China Specifications for Seismic Design of Highway

Bridges (JTG/T 2231-01-2020 2020). The N(θ) is defined by

N θð Þ ¼ Nθ −N0 ð20Þ

where Nθ and N0 are the minimum support length requirements of skew bridges and

straight bridges, respectively.

2.10 AASHTO LRFD (2012) and AASHTO Guide Specifications (2011)

It is specified in AASHTO LRFD (2012) and AASHTO Guide Specifications (2011) and

that without restrainers, shock transmission units, or dampers at the expansion bear-

ings, the minimum support length for skew bridges Nθ located in Seismic Zone 3

should satisfy the empirical Eq. (21).

Nθ ¼ 1:5� 203þ 0:155Lþ 0:619Hð Þ 1þ 0:000125θ2
� �

¼ N0 1þ 0:000125θ2
� � ð21Þ

where H is the average height of the column and for single span bridge, is equal to 0.

The unit in this formula is mm for Nθ and N0, m for L and degree for θ. Then based

on the definition of N(θ) in Eq. (20), it can be computed by:

N θð Þ ¼ Nθ −N0 ¼ 1:5� 203þ 0:155Lþ 0:619Hð Þ 0:000125θ2
� �

¼ N00:000125θ
2 ð22Þ

It can be seen clearly from the Eq. (22) that the N(θ) increases with the skew angle in

a parabolic way.

2.11 FHWA seismic retrofit manual for highway structures (Buckle et al. 2006)

In FHWA’s report by Buckle et al. (2006), the support length of existed skew bridges

should check:

Fig. 13 Regression of critical skew angles
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Nθ ¼ 102þ 0:155Lþ 0:619H þ 15:43
ffiffiffiffi
H

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2B

L

� �2
s2

4
3
5 1þ 1:25FvS1ð Þ

cosθ

¼ N0

cosθ
ð23Þ

where L is the distance between joints (m); B is span width (m); H is the tallest pier be-

tween the joints (m), Fv is site coefficient for the long-period range; and S1 is response

spectral acceleration coefficient at 1.0 s. N(θ) calculated from Eq. (23) is in unit of mm.

It is noted that the ratio of B/L in Eq. (23) needs to be taken greater than 3/8. Then

N(θ) is computed as follow.

N θð Þ ¼ Nθ −N0 ¼ N0 1 − cosθð Þ
cosθ

ð24Þ

2.12 China specifications for seismic Design of Highway Bridges (JTG/T 2231-01-2020,

2020)

In the China Specifications for Seismic Design Highway Bridges (2020), for straight

bridges, the support length should be the larger of the values computed by Eq. (25) or

600 mm. While for a skew bridge with superstructure geometry satisfying Eq. (26), the

support length shall be the larger value of Eqs. (25) and (27) and 600 mm.

N0 ¼ 500þ Lþ 8H þ 5Lk ð25Þ
sin2θ≥2B=Lθ ð26Þ
Nθ ¼ 500Lθ cosθ − cos θ þ αEð Þð Þ ð27Þ

where L and Lθ are both the total length of the bridge (m); B is the span width (m); Lk
is the maximum span length of a continuous bridge (m); and H is the average height of

columns within a continuous span. The unit is mm for Nθ and N0. It is very interesting

to note that the minimum support length of skew bridges are dependent on the aspect

ratio (B/L) of superstructure and the relative values between Eq. (25) and (27). The

additional support length due to skew are then computed base on Eq. (20). In fact, the

Eq. (26) determines a limit range for skew angle as the following.

θ1 ¼ 1
2

arcsin
2B
Lθ

≤θ≤
π
2
−
1
2

arcsin
2B
Lθ

¼ θ2 ð28Þ

Beyond this skew angle range, the Nθ is equal to N0 and hence N(θ) is equal to zero.

Within this range, the N(θ) could also be equal to zero depending upon the relative

values of Nθ and N0. It is noted that this skew angle range is only dependent on the as-

pect ratio. For each bridge configuration, the skew angle range is computed and sum-

marized in Table 1.

2.13 Comparison of the N(θ)

The additional support length due to skew N(θ) for each bridge configuration com-

puted by the Simplified Method are compared with the empirical formula specified in

various codes and specifications as described above. In this section, take the bridge with

aspect ratio of 4.0 and T = 0.9 s as a typical example. Figure 14 shows the comparison

of N(θ) for the bridge of aspect ratio of 4.0 with T = 0.9 s between the SM and current
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codes and specifications. Note that the comparison for other bridge configurations

shows similar trend and the results are not shown here for simplicity.

There are several observations in Fig. 14. First, for the same bridge model, the FHWA

(2006) shows similar results with the AASHTO (2011) when the skew angle changes

from 0° to 40° for the case 3 bridge and from 0° to 45° for the case 8 bridge, and both

codes give smaller results than the Simplified Method. When further increasing the

skew angle, both codes start to yield larger N(θ) in a faster rate. For example, when the

skew angle is 60°, the N(θ) is 178 mm and 247mm for FHWA (2006) and AASHTO

(2011), respectively, which is 30% and 80% larger than the SM (137 mm), respectively.

This clearly indicates that both the FHWA and AASHTO specifications could signifi-

cantly underestimate the N(θ) when the skew angle varies from 0° to a specific value,

while could significantly overestimate the N(θ) beyond this specific skew angle. This

specific skew angle for the turning point of underestimation and overestimation for

these two codes depends upon the combination of span length and width. In addition,

for the case 3 bridge, the China Guidelines (JTG/T 2231-01-2020 2020) gives 0 for

N(θ) when the skew angle is between 0° and 19°, indicating no skew effect is expected

during this skew angle range. This clearly is a significant underestimation of the skew

effect. The reasons for this observation are twofold. First, based on Eq. (28), when the

skew angle is between 0° and θ1, (i.e. 15°), the Nθ is specified to be equal to N0 and

hence N(θ) is equal to zero. Second, when the skew angle is 15° and 19°, the Nθ in Eq.

(27) is smaller than N0 in Eq. (25) and hence Nθ is equal N0, resulting in zero for the

N(θ). When the skew angle increases from 19° to 70°, the N(θ) increases with the skew

angle in a fast rate. This leads to underestimation of N(θ) for skew angle is between 19°

and 21°, and significant overestimation for skew angle between 21° and 70°. For ex-

ample, when the skew angle is 40°, the N(θ) from the China Guidelines is equal to 645

Fig. 14 Comparison of the additional support length N(θ) for prototype bridges of aspect ratio of 4.0
between various code specifications and the Simplified Method (T = 0.9 s)
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mm, which is 6.5 times larger than the value of the SM (86 mm). Similar observation is

made for the comparison for the case 8 bridge between the SM and the China Guide-

lines. Therefore, the China guidelines could significantly underestimate the effect of

skew on the support length requirements when the skew angle is small, while could sig-

nificantly overestimate the support length requirements when the skew angle is in the

medium to large range. Above all, none of the empirical formulas for the support

length requirements of skew bridges in current codes and specifications can accurately

reflect the influence of skew on the support length requirements.

3 Conclusions
In this paper, a comprehensive parameter study was carried out using a shake table

experiment validated Simplified Method to investigate the influence of skew angles,

superstructure aspect ratio (span length/span width), fundamental periods of the

bridges and combinations of the span length and width on the additional support

length requirements of bridges due to skew. This method is developed to estimate

the additional support length requirements of bridges due to skew based on the

premise that the obtuse corner of the superstructure engages the back wall of the

abutment during lateral loading and the superstructure then rotates about this cor-

ner. Parameters of interests include skew angles, fundamental periods of the brid-

ges, aspect ratio, and combination of span length and width. To be specific, two

sets of prototype bridges were used which had the same set of aspect ratios from

3.0 to 5.0, with increments of 0.5, but different combinations of the span length

and width. For each bridge, the bearing properties were varied to give the funda-

mental period changing from 0.7 s to 1.2 s to represent the uncertainty in the

bridge dynamic properties, and the skew angle was varied from 0° to 70°, a typical

range for practical bridges. A design response spectrum defined in AASHTO LRFD

was used to represent the design-level earthquakes in Seismic Zone 3, and to ex-

cite the prototype bridges. The results for the additional support length due to

skew was also compared with empirical formulas specified in current codes and

specifications. General findings from this study are as follows.

� The additional length required to prevent unseating due to skew N(θ), increases

with the skew angle in an approximately linear manner when the angle is between

0° and a critical skew angle θcrit and then decreases with the skew angle.

� The θcrit increases with the aspect ratio approximately in a linear manner and

shows negligible dependence upon the fundamental periods of the bridges and

combination of the span length and width. The θcrit is in the range of 58° to 66°,

when the aspect ratio is varied from 3.0 to 5.0. The θcrit is related with the aspect

ratio by:

θcrit ¼ 5:88
L
B

� �
þ 39:50

� The N(θ) is also a function of the combination of span length and width. The

bridge with the same aspect ratio but different combinations of L and B could have

different N(θ).
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� The results from the Simplified Method suggest that the empirical equations

for minimum support length of skew bridges in the AASHTO LRFD

Specifications (2012) and AASHTO Guide Specifications for Seismic Design of

Bridges (2011), the FWHA Seismic Retrofitting Manual for Highway Structures

(2006) and the China Specifications for Seismic Design of Highway Bridges

(2020), could significantly underestimate the effect of skew on support length

when the skew angle varies from zero to a specific value while could

significantly overestimate the effect of skew beyond this specific angle. The

specific angle depends upon the aspect ratio and the combination of the span

length and width. Therefore, the empirical formulas for minimum support

length requirements of skew bridges in current codes and specifications can not

accurately reflect the influence of skew.
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