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Abstract

Cable force estimation is essential for security assessment of cable-stayed bridges.
Cable force estimation methods based on the relationship between cable force and
frequency have been extensively studied and used during both construction phase
and service phase. However, the effect induced by inclination angle of the cable is
not included in the establishment of frequency-cable force relationship as horizontal
cable model is normally employed. This study aims to investigate the influence of
the inclination angle on vibration based cable force estimation and provide practical
formulas accordingly. Firstly numerical examples of fixed-fixed and hinged-hinged
cables are simulated to illustrate the necessity of considering the inclination angle
effect on the modal parameters and cable force estimation for inclined cables with
small sag. Then practical formulas considering the inclination angle effect to estimate
the cable force of fixed-fixed and hinged-hinged cables via the fundamental
frequency are established accordingly. For the inclined cables with unknown
boundary conditions, the coefficients reflecting boundary condition are predicted via
the practical formulas for fixed-fixed and hinged-hinged cables. And the cable force
considering the influence of inclination angle and unknown boundary conditions is
obtained by iteration method. Finally, numerical examples are presented to
demonstrate the effectiveness of the proposed method.
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1 Introduction
Cable-stayed bridges are widely used due to their reasonable structural force, beautiful

shape, mature construction methods and large span (Zhang et al. 2020). The cable is

the main stressed member of the cable-stayed bridge, and its health status affects the

safety of the bridge. Cable damages induced by corrosion, fatigue and other reasons,

may lead to bridge collapse and other malignant accidents. Therefore cable force has

become one of the most important indexes for cable-stayed bridge condition assess-

ment (Ren and Hu 2009; Zhao et al. 2020; Tian et al. 2021).

Generally the cable force estimation methods can be divided into direct methods and

indirect methods (Ren et al. 2005; Kim et al. 2007). The direct method refers to the

direct measurement of the cable force, including the manometer method and the

pressure sensor method. On the other hand, indirect method estimates the cable force
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by measuring indirect physical quantities, such as magnetic flux method and vibration-

based method. Vibration based method is the most widely used method for its high

precision, convenient implementation and low cost. The main principle is that the

cable force can be estimated by the measured frequencies according to the specific rela-

tionship between the cable force and frequency (Cunha et al. 2001). During the process

of establishing the relationship between the cable force and frequency, various factors,

such as bending stiffness, sag, boundary conditions, and temperature are often simpli-

fied or ignored, which would lead to non-negligible errors in the estimated cable force

(Dan et al. 2014; Chen et al. 2018).

For slender cables, the bending stiffness of the cable plays a very weak role in

vibration, and its vibration basically follows the string vibration theory (Ceballos and

Prato 2008). However, the bending stiffness of the short and thick cables cannot be

ignored, and their vibrations are closer to the Euler Bernoulli beam (Fang and Wang

2012). If the string vibration theory was still adopted, the calculated cable force would

be larger.

Three hinds of boundary conditions specific as hinged-hinged, fixed-fixed, and

hinged-fixed are normally adopted in the vibration based cable force estimation. The

beam model with hinged-hinged boundary conditions has definite analytical solutions,

thus the corresponding cable force can be solved directly by using the cable parameters.

Since there are no analytical solutions for beam models with fixed-fixed and hinged-

fixed boundary conditions, numerical solutions are normally required (Huang et al.

2014). The concept of effective calculation length was introduced to transform the fixed

boundary into the hinged boundary, then the solution for hinged-hinged boundary con-

dition could be adopted (Yan et al. 2015). Actually the boundary condition of cable is

elastic embedded boundary between hinged and fixed instead of ideal hinged or fixed

(Huang et al. 2015). On the one hand, the anchorage form of the cable end is complex

with various degrees of elastic embedded. Interpolation method can be used to get the

coefficients that reflecting the degrees of elastic embedded boundary and the cable

force can be further obtained iteratively. On the other hand, in order to inhibit the

large vibration and fatigue failure of the cable, dampers are usually installed at the con-

nection location between the cable and bridge deck, which result in more complex

boundary conditions and vibration performance (Yan et al. 2019; Shi and Zhu 2018).

The cable is generally arranged as a catenary due to the dead weight. The cable sag

affects both the natural frequency and cable force estimation. Studies reveal that sag

has a great influence on the fundamental frequency, but little influence on the even

order frequencies (Zui 1996). When the cable length is long and the cable force is

small, the sag effect must be considered in cable force estimation. In this case, the even

order frequency can be used to improve the accuracy (Zui 1996).

The influence of temperature on cable force is mainly caused by the daily

temperature range. As the thermal conductivity coefficients vary depending on the ma-

terials, the same temperature change will induce a large temperature difference among

cables, beams and towers, which in turn generate a large additional internal force (Zhao

et al. 2017; Feng et al. 2019; Ma et al. 2021). The cable forces of cable-stayed bridges

are usually designed according to the closure temperature, so the test temperature

should be as consistent as possible with the closure temperature to minimize the

temperature influence.
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Though great efforts have been paid on various factors as mentioned above, the

inclination angle effect attracts little attention. Most of the existing methods take

horizontal cable model to establish the relationship between cable force and frequency,

without considering the influence of cable inclination. When solving the differential

equation of cable vibration, the cable force is linearly distributed along the length due

to its self-weight. However, the cable force is deemed as constant in the existing

horizontal cable model, which will inevitably generate errors in the solution. Besides,

inclination angle will give rise to the redistribute the dead weight of the cable and

further affect the cable sag. Thus the accuracy of the modal parameters and cable force

estimation would be reduced. In view of this, this study will investigate the influence of

inclination angle on cable force estimation for cables with small sag, and provide

practical cable force estimation formulas for engineering practice accordingly. Numerical

studies will be conducted to demonstrate the effectiveness of the proposed practical

formulas.

2 Basic theory
An inclined cable model considering the bending stiffness, inclination angle, sag, exter-

nal force and boundary conditions is shown in Fig. 1. The in-plane motion equation (y

direction) of the cable can be expressed as (Ma 2017):

∂
∂s

T þ τð Þ ∂z
∂s

� �
−
∂2 EIκð Þ
∂s2

þmg cosθ ¼ m
∂2ν
∂t2

ð1Þ

where EI denotes the bending stiffness of the cable, m(x) denotes the mass per unit

length, T and τ(x, t) denote the cable force and force increment caused by the free

vibration, respectively.

The sum of the displacement in the y direction is

z x; tð Þ ¼ y xð Þ þ ν x; tð Þ ð2Þ

where y(x) and ν(x, t) denote the static deflection caused by the dead weight of the

cable and the deflection caused by the vibration in the y direction, respectively. μ(x)

denotes the deflection in the x direction, ds = (dx2 + dy2)1/2 denotes the infinitesimal

length, θ denotes the inclination angle, and κ denotes the bending curvature.

Fig. 1 An inclined cable
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When the cable damping and axial component of the motion equation are not con-

sidered, the ds = (dx2 + dy2)1/2 can be replaced by dx and Eq.(1) can be simplified as

∂
∂x

H þ hð Þ ∂z
∂x

� �
−
∂2 EIz00ð Þ

∂x2
þmg cosθ ¼ m

∂2ν
∂t2

ð3Þ

where the first term is the cable force component in the y direction, the second term is

the second derivative of the bending moment, the third term is the dead weight compo-

nent of the cable in the x direction, and the fourth term is the inertia term. H(x) and

h(t) are the cable force component in the x direction and the additional component

caused by vibration, respectively. The following relationship can be found

T ¼ H � ds=dx ð4Þ

When the sag-span ratio is less than 1/8, the H can be deemed as T (Ma 2017). In

the following description, the cable force is represented by T for simplicity. By ignoring

the second order term, Eq.(3) can be expressed as

EI
∂4ν x; tð Þ

∂x4
− T xð Þ ∂

2ν x; tð Þ
∂x2

− T 0 xð Þ ∂ν x; tð Þ
∂x

− h tð Þ d
2y

dx2
þm

∂2ν
∂t2

¼ 0 ð5Þ

Assuming the solution of Eq.(5) has the following form

ν x; tð Þ ¼ ϕ xð Þ � q tð Þ ð6Þ

where ϕ(x) and q(t) are the shape function and generalized coordinate, respectively.

The deformation compatibility equation of the cable can be established according to

the geometrical and elastic relations between stress and strain (Ma 2017)

h ds=dxð Þ3
EA

¼ ∂μ
∂x

þ dy
dx

∂ν
∂x

ð7Þ

Combine Eq.(6) and Eq.(7), the motion equation of the cable is obtained as follows

EI
d4ϕ

dx4
− T

d2ϕ

dx2
− T 0 dϕ

dx
þ

R L
0

d2y

dx2
ϕdx

R L
0

ds=dxð Þ3
EA

dx

d2y

dx2
þmω2ϕ ¼ 0 ð8Þ

As the cable force T varies along the chord line due to the influence of the inclined

angle, Eq.(8) is a four-order differential equations with variable coefficients. In this

paper, the finite difference method is used to solve this equation (Mehrabi and

Tabatabai 1998). The cable is divided into N segments equally with length of l in

the x direction (Fig. 2).

The difference scheme of the function ϕ(x) is

dϕ
dx

¼ ϕiþ1 − ϕi − 1

2l
ð9aÞ

d2ϕ

dx2
¼ ϕiþ1 − 2ϕi þ ϕi − 1

l2
ð9bÞ

d3ϕ

dx3
¼ ϕiþ2 − 2ϕiþ1 þ 2ϕi − 1 − ϕi − 2

2l3
ð9cÞ
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d4ϕ

dx4
¼ ϕiþ2 − 4ϕiþ1 þ 6ϕi − 4ϕi − 1 þ ϕi − 2

l4
ð9dÞ

Then the matrix form of the discrete equation is obtained for Eq.(8)

Kw ¼ Mω2w ð10Þ

where K=K1 + K2, w
T = {w1,w2,…,wk}

K1

Q U W
D S U W
V D S U −

V − − − W
− − S U

V D G

2
6666664

3
7777775
kxk

ð11Þ

where.

S ¼ 1
l4
ð − 2EIiþ1 þ 10EIi − 2EIi − 1Þ þ 2Ti

l2
, D ¼ 1

l4
ð2EIiþ1 − 6EIiÞ − Ti

l2
þ Tiþ1 − Ti − 1

4l2

U ¼ 1

l4
− 6EIi þ 2EIi − 1ð Þ − Ti

l2
−
Tiþ1 − Ti − 1

4l2
;

V ¼ − 1
2l4

ðEIiþ1 − 2EIi − EIi − 1Þ, W ¼ 1
2l4

ðEIiþ1 þ 2EIi − EIi − 1Þ
Q ¼ S þ Krot − 1l − 2EI0

Krot − 1lþ2EI0
V ði ¼ 1Þ, G ¼ S þ Krot − 2l − 2EIkþ1

Krot − 2lþ2EIkþ1
W ði ¼ kÞ

Each row in the matrix (K1) corresponds to one node of the discrete cable, and k de-

notes the node number of the cable except two ends. EI0 and EIk + 1 are the bending

stiffness of the two ends, respectively. Krot − 1 and Krot − 2 are the rotational stiffness of

the two ends, respectively.

Due to the effect of the inclination, the cable forces are linearly distributed along the

x direction (Ma 2017). The cable forces at the top end and bottom end are:

T0 ¼ TM þ 0:5mgL sinθ ð12aÞ
Tkþ1 ¼ TM − 0:5mgL sinθ ð12bÞ

where TM is the average of the cable forces at both ends. The cable force at any node (i) is

Ti ¼ TM þmg sinθ 0:5L − ið Þ ð13Þ

The nonlinear stiffness matrix K2 is

Fig. 2 Discrete cable model
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K2 ¼ rsT ð14Þ

where.

rT = {r1, r2,…, rk}, s
T = {s1, s2,…, sk}

ri ¼ siXk
1

t3i =EAi

, si ¼ yiþ1 − 2yiþyi − 1

l2
, ti ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðyiþ1 − yi − 1

2l Þ2
q

The deflection curve of the cable is not a parabola as normally assumed when the

influence of the inclination angle is considered. Thus it is calculated using the finite

difference method according to the static equilibrium differential equation of the cable.

The static equilibrium differential equation of a stay cable is:

EI
d4y

dx4
− T

d2y

dx2
− T 0 dy

dx
¼ mg cosθ ð15Þ

Eq. (15) is then discretized and the corresponding matrix form is

K1Y ¼ mg cosθ ð16Þ

where Y= {y1, y2,…, yk}, yi denotes the static deflection at the ith node, m= {m1,m2,…,mk}.

M ¼
m1 … 0
⋮ ⋱ ⋮
0 ⋯ mk

0
@

1
A ð17Þ

It should be noted that the stiffness matrix K is asymmetric due to the effects of in-

clination angle.

3 Influence of the inclination angle on the cable force estimation
3.1 Iterative method for cable force estimation

As the characteristic frequency equation (Eq. 10) is a transcendental equation, there is

no explicit formula for the cable force. The iterative method based on frequency sensi-

tivity can be used to estimate cable force (Kim et al. 2007; Ma 2017). As this study

mainly focus on inclination angle effect, other parameters such as bending stiffness and

axial stiffness, are assumed to be constant in this section. Then Eq.(10) can be trans-

formed into

K Tð Þ − ζ Tð ÞM Tð Þ½ �w Tð Þ ¼ 0 ð18Þ

where ζ(T) = ω2(T), ζ and w(T) are the eigenvalue and corresponding eigenvector of

Eq.(18), respectively. Eq.(18) can be further translated into

K Tð Þ − ζ1M½ � dw1 Tð Þ
dT

¼ ζ1
dM
dT

−
dK Tð Þ
dT

� �
w1 Tð Þ þMw1 Tð Þ dζ1 Tð Þ

dT
ð19Þ

The derivative of the frequency to the cable force is

dζ1 Tð Þ
dT

¼ wT
1 Mw1

� � − 1
wT

1
dK Tð Þ
dT

− ζ1
dM
dT

� �
w1 ð20Þ

The derivative of the matrix K1 can be easily obtained via Eq.(11). The derivative of

the matrix K2 is
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dK2 i; jð Þ
dT

¼ ∂ ris j
� �
∂T

¼ d rið Þ
dT

s j þ ri
d s j
� �
dT

ð21Þ

where.

dðs jÞ
dT ¼ 1

l2
½dy jþ1

dT − 2
dy j

dT þ dy j − 1

dT �, dðtiÞdT ¼ 1
2l ½1þ ðy jþ1 − y j − 1

2l Þ2� − 1=2ðdy jþ1

dT −
dy j − 1

dT Þ
dðriÞ
dT ¼ dðsiÞ

dT EAðPk
1
t3i Þ

− 1

− ðPk
1
t3i Þ

− 2

ðPk
1
3t2i

dðtiÞ
dT ÞEAsi, dYdT ¼ −K ‐1

1
dK1
dT Y

where i, j = 1, 2, …, k, and k is the dimension of the stiffness matrix. The nonlinear

stiffness matrix K2 is related to the static deflection of the cable.

With Eq.(20), the cable force can be solved iteratively after obtaining the derivative of

cable frequency. Suppose

γ ¼ dζ
dT

¼ Δζ
ΔT

ð22Þ

The initial cable force is assumed to be T1 = Teva, and the frequency ζ1, c and

frequency derivative γ1 can be obtained according to Eq.(18) and Eq.(20), respectively.

The frequency error Δζ1 is

Δζ1 ¼ ζm − ζ1;c ð23Þ

where ζm denotes the measured frequency.

The cable force error ΔT1 is

ΔT 1 ¼ Δζ1
γ1

ð24Þ

Then the cable force T2 can be obtained as

T2 ¼ T 1 þ ΔT 1 ð25Þ

The above iterative process is repeated until the convergent cable force value (Ti + 1)

is obtained. It should be noted that this study mainly focuses on the effects of inclination

angle on the in-plane frequency and the corresponding estimated cable force. Actually the

inclination angle may also affect out-of-plane frequency and this would be further

investigated.

3.2 Numerical study

The characteristic parameters λ2 and ξ are employed to reflect the sag and bending

stiffness of the cable, respectively (Irvine and Caughey 1974). Specific as

λ2 ¼ mgL
T

	 
2 EAL
TLe

ð26Þ

ξ ¼
ffiffiffiffiffi
T
EI

r
L ð27Þ

where Le denotes the effective length of the cable.

The ranges of the two parameters for more than 95% of cable-stayed bridges in the

world are λ2 < 3.1 and ξ > 50 (Tabatabai et al. 1997). In other words, most cables belong

to cables with small sag. This section aims to investigate the inclination angle effect on
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the modal parameters and estimated cable force for fixed-fixed and hinged-hinged

cables with small sag and different bending stiffness.

Three cables as listed in Table 1 are employed in this example. The parameters of Cable

I and Cable II are taken from Ref. (Kim et al. 2007; Ma 2017). Cable I, Cable II, and Cable

III are deemed as cables with small bending stiffness, medium bending stiffness, and large

bending stiffness, respectively. The cable is divided into 100 segments equally for analysis.

Natural frequency is an important parameter for cable force estimation in vibration

based method. This section studies the effect of different inclination angle on natural

frequency of hinged-hinged cable. The relation curves between the frequency and the

inclination angle of the three cables are obtained by using the cable vibration theory

expressed in Section 2 and shown in Fig. 3. The marked frequency values in the figure

are the frequency values of the cable when the inclination angle are equal to 0°, 30°, 60°

and 90°, respectively. It can be seen that the fundamental frequency of cables with small

sag (large, medium and small bending stiffness) decreases with inclination angle, and

the maximum relative reduction is 8.53%. When the frequency sensitivity based method

is used to estimate the cable force (Kim et al. 2007; Ma 2017), mode shape of the cable

is required during the iterative process. The first order maximum normalized mode

shapes of three cables with different bending stiffness and inclination angles are calcu-

lated via the above mentioned method. The results indicated that the effects of inclin-

ation angle on mode shapes of the three cables are not obvious, thus they are not

exhibition here for the space cause.

As the inclination angle affects the natural frequency of the cable, the cable force esti-

mation accuracy would also be affected accordingly. The cable force estimation results

of hinged-hinged cables (30° and 60°) with and without considering the inclination

angle effects are compared in Table 2. For the hinged-hinged cable, the maximum cable

force estimation error is about 10% when the inclination angle effects are not consid-

ered. The results show that the influence of inclination on frequency, mode shape and

cable force estimation accuracy for fixed-fixed cables is almost the same as the hinged-

hinged cable. The numerical examples clearly indicate the necessity of considering the

inclination angle effect on the cable force estimation for inclined cables with small sag.

4 Practical cable force estimation formulas for cables with known boundary
The iterative method is not convenient for practical application as the process is too

complicated. Therefore it is necessary to establish a practical formula for cable force

estimation based on the fundamental frequency.

4.1 Analysis of the cable frequency and characteristic parameters

The relationship between the cable force, bending stiffness and frequency square for

hinged-hinged cables with different inclination angle (00, 300, 600 and 900) are

Table 1 Physical and geometric parameters of the three cables

Cable. λ2 ξ m(kg/m) L(m) HM(MN) E(GPa) A(×10−3m2) I(×10−6m4)

Cable I 0.79 605.5 400.0 100 2.9036 15.988 7.8507 4.9535

Cable II 1.41 50.5 400.0 100 26.1325 20,826 7.8633 4.9204

Cable III 2.76 10.7 400.0 100 90.0000 1,716,800 7.6110 4.6097
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calculated according to the above-mentioned method and shown in Fig. 4. It can be

seen that bulge appears in the frequency of the cable with large sag when the cable

force is small. With the increase of inclination angle, the bulge disappears gradually.

When the inclination angle is 90°, no bulge can be found and obvious linear relation-

ship can be found between the frequency square, cable force and bending stiffness. This

is because the cable is not affected by the sag when the inclination angle is 90°, and the

results conforms to the cable force estimation formula derived from the theory of

hinged-hinged beam. With the increase of cable force, the frequency corresponding to

small sag cable is nearly flat. However, due to the influence of inclination angle, the

slope of the surface is varies with inclination angle. When the cable force continues to

increase, the sag effect of the cable become very small, and the influence of inclination

angle can be ignored. Thus the surface at each inclination angle is close to the theoret-

ical formula derived from the theory of hinged-hinged beam.

For cables with large sag, the cable frequency first increases and then converges to a

stable value with the increase of bending stiffness. It should be noted that the increase

of inclination angle accelerates the convergence speed. For cables with small sag, the

frequency surface of the cable increases gently. When the sag is extremely small, the

bending stiffness has little influence on the frequency.

Fig. 3 Frequency-angel curve of hinged-hinged cables. (a) 0°. (b) 30°. (c) 60°. (d) 90°

Table 2 Estimation results of a hinged-hinged cable with inclination of 30°and 60°

Cable Angel
(°)

FF
(Hz)

RCF
(MN)

WCAE CAE

EF (MN) RE (%) EF (MN) RE (%)

Cable I 30 0.436 2.9036 2.8447 −2.028 2.9002 −0.118

60 0.429 2.9036 2.7312 −5.938 2.8999 −0.128

Cable II 30 1.335 26.13254 25.1504 −3.758 26.1484 0.061

60 1.299 26.13254 22.9983 −11.994 26.1427 0.039

Cable III 30 2.632 90.0000 82.6892 −8.123 89.9544 −0.051

60 2.527 90.0000 79.1614 −12.043 90.0070 0.008

Note: FF denotes fundamental frequency; RCF denotes reference cable force; RE denotes relative error; EF denotes
estimated force; WCAE denotes result without considering angel effect; and CAE denotes result considering angel effect
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4.2 Practical formula for cable force estimation

As pointed out in Section 3.1, most cables of cable-stayed bridges belong to cables with

small sag (λ2 < 3.1). According to Section 4.1, the frequency square of cables with small

sage is linearly related to the cable force and bending stiffness. However, the surface

slope varies with inclination angle. When λ2 < 0.17, cable force can be calculated

according to the string theory without leading to obvious error (Ceballos and Prato

2008). Thus this section aims to establish the practical formula considering the
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inclination angle effect for fixed-fixed and hinged-hinged cables with small sag

(0.17 < λ2 < 3.1) based on curve fitting method.

Cable II with the parameters used in Section 3.2 is reused in this section. The dimen-

sionless parameter λ2 is restricted into the interval [0.17, 3.10] by adjusting the cable

force value in Eq.(26). The interval of the dimensionless parameter ξ is calculated via

Eq.(27) by setting different bending stiffness of the cable (Fang and Wang 2012). Details

about the parameters are listed in Table 3.

For the cables with large bending stiffness (0 < ξ < 18), the relationship curve between

cable force and frequency square with different inclination angles are obtained by using

the cable vibration theory. Figure 5 shows the curves with inclination angles of 00, 300,

600 and 900. It is observed that the relationship between the cable force and frequency

square is linear and the curve slopes are different depend on the inclination angels.

Refer to the Ref. (Huang et al. 2015), a linear function between the cable force and fre-

quency square can be obtained by using the regression analysis.

T ¼ α �mL2 f 21‐β �
EI

L2
ð28Þ

where α and β are fitting coefficients to be determined. Their values when the inclin-

ation angles are 00, 150, 300, 450, 600, 750 and 900 are calculated and compared in

Table 4. It is observed that that the coefficients α and β decrease with the inclination

angle.

Suppose the function forms are α = a1 cos(b1θ) + c1 and β = a2 cos(b2θ) + c2, the fitting

curves of the two coefficients are plotted in Fig. 6. The coefficients α and β obtained by

linear regression analysis are:

α ¼ 0:201 cos 2:038θð Þ þ 4:202 ð29aÞ
β ¼ 13:020 cos 2:042θð Þ þ 22:960 ð29bÞ

Thus the practical cable force estimation formula for hinged-hinged cables with large

bending stiffness (0 < ξ < 18) and small sag (0.17 < λ2 < 3.10) can be acquired via substi-

tuting Eq.(29a) and Eq.(29b) into Eq.(28).

Following the same procedure, the practical cable force estimation formulas consider-

ing the inclination angle effect for hinged-hinged cables and fixed-fixed cables with

small sag (0.17 < λ2 < 3.10) can be obtained (Table 4 and Figs.7, 8, 9 and 10). The results

can be summarized as

T ¼ a1 cos b1θð Þ þ c1½ �mL2 f 21‐ a2 cos b2θð Þ þ c2½ �EI
L2

ð30Þ

Table 3 Dimensionless parameter range

Cable Force
(MN)

Bending Stiffness
(MN ⋅m2)

λ2 ξ Reference ξ
(Ren et al. 2005)

[93.5, 245] 10,244 [0.17, 3.10] [9.55, 15.42] [0, 18]

[20, 52] 102.44 [0.17, 3.10] [44.19, 71.25] [18, 210]

[2, 5.2] 0.10244 [0.17, 3.10] [441.85, 712.46] [210, +∞]
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And the coefficients a1, a2, b1, b2, c1 and c2 are listed in Table 5.

4.3 Numerical study

This section aims to verify the effeteness and study the applicability of the practical

formulas proposed in Section 4.2 by numerical examples. The relevant parameters of

the three cables here are the same as in Section 3.2.

The estimated results of the hinged-hinged cable by the practical formula and the

beam theory formula are compared in Table 6. The results calculated by the practical

formula considering the inclination angle effect achieve higher precision than that

calculated by the beam theory formula. With the increase of the inclination angle, the

differences between the results calculated by the two formulas decreases gradually.

When the inclination angle is 90°, the errors of estimated cable force are both less than

1%. This is because the influence of sag on cable force estimation decreases with the in-

crease of inclination angle, and when the inclination angle is 90° the cable becomes a

suspension rod or suspension rope without sag. Table 7 compares the estimated results

of the fixed-fixed cable by the practical formula and Ref. (Ma et al. 2021). The practical

formula considering the inclination angle effect provides results with higher precision.

Fig. 5 Cable force-frequency square curve for hinged-hinged cable with large bending stiffness. (a) α. (b) β

Table 4 Coefficients α and β of hinged-hinged cables

Bending Stiffness Angle
(°)

0° 15° 30° 45° 60° 75° 90°

Large bending stiffness α 4.4050 4.3750 4.2975 4.1950 4.0950 4.0250 4.000

β 36.0885 34.1850 29.0992 22.4125 16.0089 11.4893 9.8689

Medium Bending Stiffness α 4.5125 4.4750 4.3750 4.2450 4.1200 4.0325 4.0000

β 682.0396 632.5486 500.7676 328.5738 165.0678 50.6429 9.8104

Small Bending Stiffness α 4.5150 4.4775 4.3775 4.2450 4.1175 4.0275 3.9975

β 6.7472E4 6.2503E4 4.9237E4 3.1842E4 1.5228E4 3.5503E3 − 627.668
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Fig. 6 Coefficient-angle fitting curve for hinged-hinged cable with large bending stiffness

Fig. 7 Cable force-frequency square curve for hinged-hinged cable with medium bending stiffness. (a) α. (b) β
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Fig. 8 Coefficient-angle fitting curve for hinged-hinged cable with medium bending stiffness

Fig. 9 Cable force-frequency square curve for hinged-hinged cable with small bending stiffness. (a) α. (b) β
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Similarly to the hinged-hinged cable, the differences between the results calculated by

the two formulas decrease gradually with the increase of the inclination angle.

Numerical examples reveal that the practical formula for cables with known bound-

ary proposed in Section 4.2 can consider the inclination angle effects well and achieve

higher accuracy for inclined cables with small sag. It should be noted that the accuracy

of cable force estimation of Cable II is higher than that of Cable I and Cable III, which

is caused by the fact the practical formula is fitted by the parameters of Cable II, which

Fig. 10 Coefficient-inclination fitting curve for hinged-hinged formula with small bending stiffness

Table 5 Coefficients of the practical formula for cable force estimation

Boundary Bending stiffness a1 b1 c1 a2 b2 c2

Hinged-Hinged Cable Large bending stiffness(0 ≤ ξ≤ 18) 0.201 2.038 4.202 13.020 2.042 22.960

Medium bending stiffness
(18 < ξ ≤ 210)

0.254 2.042 4.256 336.000 2.000 338.500

Small bending stiffness(ξ > 210) 0.258 2.045 4.256 34,040.000 2.000 32,740.000

Fixed-Fixed Cable Large bending stiffness(0 ≤ ξ≤ 18) 0.067 2.031 3.590 6.028 2.000 56.100

Medium bending stiffness
(18 < ξ ≤ 210)

0.203 2.044 4.089 285.200 2.000 418.000

Small bending stiffness(ξ > 210) 0.259 2.038 4.255 34,080.000 2.000 3340.000
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manifests that the practical formula can be established according to the concerned

cable when higher precision is required in practical application.

5 Practical tension estimation formula for cables with unknown boundary
5.1 Boundary effects on the cable frequency

The actual boundary condition of a cable is between the hinged and fixed, and the

anchorage end of the cable always bears part of the bending moment. Therefore, the

boundary conditions at both ends of the cable are assumed to be elastic embedded bound-

ary, and the rotational stiffness at both ends is assumed to be Krot − 1 and Krot − 2, as shown

Table 6 Force estimation results of hinged-hinged cables

Cable Angle
(°)

FF
(HZ)

RC F
(MN)

Proposed Method Beam Theory

EF (MN) RE (%) EF (MN) RE (%)

Cable I 0 0.440 2.9036 2.9665 2.16 3.0975 6.68

30 0.436 2.9360 1.12 3.0415 4.75

60 0.429 2.9062 0.09 2.9446 1.41

90 0.426 2.9132 0.33 2.9035 −0.002

Cable II 0 1.352 26.1325 26.0671 −0.25 29.1454 11.53

30 1.335 26.0232 −0.42 28.4145 8.73

60 1.299 26.0573 −0.29 26.8973 2.93

90 1.280 26.2042 0.27 26.1133 −0.07

Cable III 0 2.684 90.0000 98.3759 9.31 107.4428 19.38

30 2.632 95.9780 6.64 103.0199 14.47

60 2.527 91.9424 2.16 94.3527 4.84

90 2.473 89.9829 −0.02 90.0327 0.04

Note: FF denotes fundamental frequency; RCF denotes reference cable force; RE denotes relative error; EF denotes
estimated force

Table 7 Force estimation results of fixed-fixed cables

Cable Angle
(°)

FF
(HZ)

RC F
(MN)

Proposed Method Ref. (Zui et al.1996)

EF (MN) RE (%) EF (MN) RE (%)

Cable I 0 0.440 2.9036 2.9605 1.96 3.0758 5.93

30 0.437 2.9458 1.45 3.0338 4.49

60 0.430 2.9150 0.39 2.9371 1.15

90 0.426 2.9065 0.10 2.8825 −0.73

Cable II 0 1.392 26.1325 26.0628 −0.27 28.5004 9.06

30 1.377 26.0094 −0.47 27.8626 6.62

60 1.347 26.0602 −0.28 26.6085 1.82

90 1.332 26.2208 0.34 25.9923 −0.54

Cable III 0 3.123 90.0000 93.4616 3.85 98.2242 9.14

30 3.101 92.5151 2.79 96.3291 7.03

60 3.056 90.7268 0.81 92.4945 2.77

90 3.034 90.0424 0.05 90.6402 0.71

Note: FF denotes fundamental frequency; RCF denotes reference cable force; RE denotes relative error; EF denotes
estimated force
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in Fig. 2. According to the classical mechanics theory, for the fixed-fixed and fixed-hinged

beam, unit rotation at the fixed end leads to 0 and 2i (i = EI/l) bending moment at the

hinged end and fixed end, respectively. Therefore, to produce a unit angle at the elastic

embedded boundary, the required bending moment is between 0 and 2i.

The three cables mentioned in Section 3.2 are retaken as examples. The frequen-

cies of three boundary conditions (hinged-hinged, fixed-fixed, and elastic embedded

boundary) with different inclination angles are calculated according to the cable

vibration theory and shown in Table 8. The rotational stiffness of the two ends of

the elastic embedded boundary are equal, i.e., Krot − 1 = Krot − 2. The different elastic

embedded boundaries are set to be K
0
rot ¼ 0:5EI=l , K

00
rot ¼ EI=l , and K

000
rot ¼ 1:5EI=l ,

respectively.

5.2 Cable force estimation process

Taken Cable II as an example, this section proposes a cable force estimation

process considering the influence of the inclination angle and unknown boundary

conditions. The coefficient reflecting the elastic embedded boundary is firstly

calculated by interpolation method based on practical formulas for fixed-fixed

and hinged-hinged cables. Then the cable force taking into account the influence

of the inclination angle and unknown boundary conditions is obtained through

iteration.

According to Eq.(28), the practical force estimation formulas for cables under differ-

ent boundary conditions can be expressed in the same form.

T ¼ a1 cos b1θð Þ þ c1½ �mL2 f 21‐ a2 cos 2:000θð Þ þ c2½ � EI
L2

ð31Þ

where a1, b1, c1, a2, and c2 are coefficients to be determined according to the boundary

conditions.

Table 8 Frequencies calculated using different boundary conditions

Cable Boundary Condition 0° 30° 60° 90°

Cable I Hinged 0.440 0.436 0.429 0.426

Elastic K
0
rot 0.440 0.436 0.429 0.426

Elastic K
00
rot 0.440 0.436 0.429 0.426

Elastic K
000
rot 0.440 0.436 0.429 0.426

Fixed 0.440 0.437 0.430 0.426

Cable II Hinged 1.352 1.335 1.299 1.280

Elastic K
0
rot 1.370 1.355 1.322 1.306

Elastic K
00
rot 1.377 1.362 1.330 1.314

Elastic K
000
rot 1.381 1.366 1.334 1.317

Fixed 1.392 1.377 1.347 1.332

Cable III Hinged 2.684 2.632 2.527 2.472

Elastic K
0
rot 3.012 2.987 2.936 2.911

Elastic K
00
rot 3.060 3.036 2.989 2.965

Elastic K
000
rot 3.079 3.056 3.009 2.986

Fixed 3.123 3.101 3.056 3.033
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Given that the elastic embedded boundary is between hinged and fixed, the

average of the coefficients in practical formulas for hinged-hinged and fixed-fixed

ends (Table 5) is employed as the coefficients to estimate the cable force T0, specific as

T0 ¼ 0:25þ 0:203
2

cos
2:042þ 2:044

2
θ

	 

þ 4:256þ 4:089

2

� �
mL2 f 21

‐
336:000þ 285:200

2
cos 2:000θð Þ þ 338:500þ 418:000

2

� �
EI

L2

¼ 0:2285 cos 2:0430θð Þ þ 4:1725½ � − 310:600 cos 2:000θð Þ þ 378:250½ �

ð32Þ

Then the estimated cable force T0 is substituted into Eq.(29a) and Eq.(29b) to obtain

the frequencies (f1j and f1g) of the cable with hinged-hinged and fixed-fixed ends, as

f 1 j ¼
1

L
ffiffiffiffiffiffiffiffiffi
α jm

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 0 þ β j

EI

L2

r
ð33aÞ

f 1g ¼
1

L
ffiffiffiffiffiffiffiffiffi
αgm

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 0 þ βg

EI

L2

r
ð33bÞ

The coefficients reflecting the elastic embedded boundary are obtained according to

the interpolation formula (Eq.(34))

a1 ¼ 0:254 − 0:051
f 1 − f 1 j
f 1g − f 1 j

ð34aÞ

b1 ¼ 2:042þ 0:002
f 1 − f 1 j
f 1g − f 1 j

ð34bÞ

c1 ¼ 4:256 − 0:167
f 1 − f 1 j
f 1g − f 1 j

ð34cÞ

a2 ¼ 336:000 − 50:800
f 1 − f 1 j
f 1g − f 1 j

ð34dÞ

c2 ¼ 338:500þ 79:500
f 1 − f 1 j
f 1g − f 1 j

ð34eÞ

Finally the cable force (T1) is calculated via Eq.(31). If (T1 − T0)/T > 1%, the above

process is repeated until (Ti − Ti − 1)/Ti − 1 < 1%, and the Ti is the estimated cable force.

Normally T1 can satisfy this terminate circulation condition.

5.3 Numerical study

Section 5.1 discussed the influence of boundary conditions on the frequency of cables

with different bending stiffness, and Section 5.2 presented a cable force estimation

method that takes into account the influence of the inclination angle and unknown

boundary conditions. This section will analyze the influence of boundary conditions on

cable force estimation for cables with different bending stiffness, and verify the effect-

iveness of cable force estimation method under unknown boundary conditions. The

relevant parameters of cables are the same as in Section 5.1, and the cable force estima-

tion processes of Cable I and Cable III are the same as that of Cable II. The force

estimation results are presented in Table 9, Table 10, and Table 11, respectively.
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For the cables with small bending stiffness (Cable I), the calculated frequencies under

different elastic embedded boundaries and the same inclination angle are the same,

thus the corresponding cable forces estimated according to the frequency and inclin-

ation angle are identical (Table 9). The relative errors of the cables under three differ-

ent boundary conditions are almost the same and less than 2% (Table 9). In other

words, the boundary conditions have little influence on the cables with small bending

stiffness. In actual application, the boundary conditions of cables can be treated as

hinged-hinged or fixed-fixed for simple.

As shown in Table 10 and Table 11, the boundary conditions have significant influ-

ence on the force estimation for the cables with medium bending stiffness (Cable II)

and large bending stiffness (Cable III). The estimation results obtained by the method

proposed in this section are more accurate than that obtained by the method under

Table 9 Force estimation result of Cable I

EC Angle
(°)

FF
(Hz)

RCF
(MN)

Hinged-Hinged Fixed-Fixed Identified

Tj(MN) RE(%) Tg(MN) RE(%) T1(MN) RE(%)

K
0
rot

0 0.440 2.9036 2.8705 −1.14 2.8654 −1.31 2.8680 −1.23

30 0.436 2.8655 −1.31 2.8600 −1.50 2.8627 −1.41

60 0.429 2.8848 −0.65 2.8790 −0.85 2.8819 −0.75

90 0.426 2.9137 0.35 2.9086 0.17 2.9112 0.26

K
00
rot

0 0.440 2.9036 2.8705 − 1.14 2.8654 − 1.31 2.8680 − 1.23

30 0.436 2.8655 −1.31 2.8600 −1.50 2.8627 −1.41

60 0.429 2.8848 −0.65 2.8790 −0.85 2.8819 −0.75

90 0.426 2.9137 0.35 2.9086 0.17 2.9112 0.26

K
000
rot

0 0.440 2.9036 2.8705 −1.14 2.8654 −1.31 2.8680 −1.23

30 0.436 2.8655 −1.31 2.8600 −1.50 2.8627 −1.41

60 0.429 2.8848 −0.65 2.8790 −0.85 2.8819 −0.75

90 0.426 2.9137 0.35 2.9086 0.17 2.9112 0.26

Note: EB denotes elastic boundary; FF denotes fundamental frequency; RCF denotes reference cable force; RE denotes
relative error

Table 10 Force estimation result of Cable II

EC Angle
(°)

FF
(Hz)

RCF
(MN)

Hinged-Hinged Fixed-Fixed Estimated

Tj(MN) RE(%) Tg(MN) RE(%) T1(MN) RE(%)

K
0
rot

0 1.370 26.1325 26.9495 3.13 25.0188 −4.26 26.0010 −0.50

30 1.355 26.9647 3.18 25.0026 −4.32 25.9978 −0.52

60 1.322 27.0513 3.52 24.9984 −4.34 26.0330 −0.38

90 1.306 27.2820 4.40 25.1553 −3.74 26.2238 0.35

K
00
rot

0 1.377 26.1325 27.2964 4.45 25.3490 −3.00 26.3397 0.79

30 1.362 27.2978 4.46 25.3211 −3.11 26.3237 0.73

60 1.330 27.4009 4.85 25.3361 −3.05 26.3768 0.93

90 1.314 27.6176 5.68 25.4811 −2.49 26.5546 1.62

K
000
rot

0 1.381 26.1325 27.4954 5.22 25.5384 −2.27 26.5340 1.54

30 1.366 27.4889 5.19 25.5038 −2.41 26.5107 1.45

60 1.334 27.5765 5.53 25.5058 −2.40 26.5949 1.60

90 1.317 27.7439 6.17 25.6038 −2.02 26.4739 1.29

Note: EB denotes elastic boundary; FF denotes fundamental frequency; RCF denotes reference cable force; RE denotes
relative error
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hinged-hinged and fixed-fixed boundary conditions and the relative errors are less than

2% and 5% for the Cable II and Cable III, respectively. The boundary conditions of

cables with medium bending stiffness and large bending stiffness cannot be simplified

as hinged-hinged or fixed-fixed ends, and should be treated as unknown boundary con-

ditions in actual application.

6 Conclusion
Horizontal cable model are normally employed in the most of the existing cable force

estimation methods without considering the influence of inclination angle. This study

investigated the influence of inclination angle on cable force estimation accuracy and

provided practical formulas accordingly. The main conclusions are as follows:

(1) The fundamental frequency of a cable with small sag decreased with the increase

of the inclination angle. Significant errors could be found when the fundamental fre-

quency was applied to estimate the cable force without considering the inclination

angle effects.

(2) The proposed practical force estimation formulas for cables with fixed-fixed and

hinged-hinged cables could consider the inclination angle effects well and achieve

higher accuracy for inclined cables with small sag. Besides, the practical formula could

be established according to the concerned cable when higher precision was required in

practical application.

(3) The proposed practical force estimation formulas for cables under unknown

boundary conditions possessed high precision and superior practicability. The influence

of boundary conditions on the accuracy of cable force estimation varied with the bend-

ing stiffness. The boundary conditions had little influence on the cables with small

bending stiffness, and they could be treated as hinged-hinged or fixed-fixed for simple.

On the contrary, the boundary conditions had a significant influence on the force esti-

mation for the cables with medium bending stiffness and large bending stiffness, and

should be treated as unknown boundary conditions in actual application.

Table 11 Force estimation result of Cable III

EC Angle
(°)

FF
(Hz)

RCF
(MN)

Hinged-Hinged Fixed-Fixed Estimated

Tj(MN) RE(%) Tg(MN) RE(%) T1(MN) RE(%)

K
0
rot

0 3.012 90.0000 127.1397 41.27 80.7797 −10.24 91.0980 1.22

30 2.987 127.0212 41.13 80.3083 −10.77 91.1700 1.30

60 2.936 127.2972 41.44 79.4885 −11.68 90.9450 1.05

90 2.911 128.0851 42.32 79.2526 −11.94 91.0080 1.12

K
00
rot

0 3.060 90.0000 132.2906 46.99 85.0960 −5.45 91.3140 1.46

30 3.036 132.1089 46.79 84.6334 −5.96 91.2690 1.41

60 2.989 132.4438 47.16 83.9941 −6.67 91.8450 2.05

90 2.965 133.1648 47.96 83.7579 −6.94 94.0050 4.45

K
000
rot

0 3.079 90.0000 134.3520 49.28 86.8234 −3.53 92.2320 2.48

30 3.056 134.2093 49.12 86.4190 −3.98 92.1510 2.39

60 3.009 134.4098 49.34 85.7153 −4.76 92.9430 3.27

90 2.986 135.1655 50.18 85.5323 −4.96 93.3660 3.74

Note: EB denotes elastic boundary; FF denotes fundamental frequency; RCF denotes reference cable force; RE denotes
relative error
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