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Abstract

The serviceability and safety level of bridges often deteriorates due to the
environmental or operational conditions. A stochastic deterioration model is of
essential importance for describing the time-variation of bridge performance (e.g.,
stiffness and strength), and for use in the estimate of bridge reliability under a
probabilistic framework. In this context, the Gamma process has been widely used to
model the resistance deterioration of aging bridges, yet suffers from the deficiency that
the statistical characteristics of the process (namely mean value, variance and
autocorrelation) are not mutually independent. This paper presents a new stochastic
model for bridge resistance deterioration. As a modified version of the Gamma
process-based one, the proposed model includes a new parameter that can release the
dependence of the process autocorrelation and variance on the mean value. The
impact of the new deterioration model on the time-dependent reliability of aging
bridges is studied.

Keywords: Resistance deterioration, Stochastic process, Aging bridges, Structural
reliability

1 Introduction
In-service bridges often suffer from the deterioration of performance (e.g., stiffness and
strength) subjected to aggressive environmental or operational conditions, which may
further decline the bridge safety level below the baseline as assumed in design. It is of
essential importance to model the deterioration process of aging bridges reasonably for
use in the estimate of structural service reliability, providing a decision-aid tool for main-
tenance and repair measures for the bridges (Mori and Ellingwood 1993; Enright and
Frangopol 1998; Stewart and Val 1999; OBrien et al. 2014).
The Gamma process has been widely used to describe the resistance deterioration (the

difference between the initial and the degraded resistances) of aging bridges (Dieulle et
al. 2003; Saassouh et al. 2007; van Noortwijk et al. 2007; Li et al. 2015; Wang et al. 2015;
Wang et al. 2019), which is, by nature, a non-decreasing process and enables the autocor-
relation of the resistance deterioration process on the temporal scale to be considered.
The monotonicity of a Gamma process is guaranteed by its nonnegative and independent
increments. These increments also follow a Gamma distribution, and have an identical

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s43251-020-00003-w&domain=pdf
https://orcid.org/0000-0002-2802-1394
mailto: cao.wang@monash.edu
http://creativecommons.org/licenses/by/4.0/


Wang Advances in Bridge Engineering             (2020) 1:3 Page 2 of 9

scale parameter (Kahle et al. 2016). This fact, unfortunately, indicates that both the auto-
correlation and the variance of a Gamma process are dependent on the mean value of
the process. More precisely, once the mean of a Gamma process is known, then the auto-
correlation and the overall shape of the variance would be fully determined accordingly.
Such dependence may halter the applicability of a Gamma process-based deterioration
model in structural reliability assessment, especially for the cases where observed data are
available to calibrate the unknown parameters in the deterioration process.
Motivated by this, a new stochastic deteriorationmodel is presented in this paper, which

introduces an additional parameter that releases the dependence of the process autocor-
relation and variance on the mean value. The characteristics of the proposed model are
discussed, and the impact of the deterioration model on the time-dependent reliability of
aging bridges is investigated.

2 Stochastic model for resistance deterioration
In the presence of structural resistance deterioration, the degraded resistance at time t,
R(t), can be expressed as follows,

R(t) = R0 · G(t) (1)

where R0 is the initial resistance and G(t) is the deterioration function (a stochastic
process). For a reference period of (0, t), in order to reflect the randomness nature of
resistance deterioration, the period (0, t) is subdivided into n identical sections, namely
(t0 = 0, t1) , (t1, t2) , . . . (tn−1, tn = t). With this, the deterioration function valued at time
tn, G(tn), is Li et al. (2015).

G(tn) = 1 −
n∑

i=1
d̂(ti) · ε(ti) (2)

where d̂(ti) is the mean degradation within (ti−1, ti), which is deterministic, and ε(ti) is a
sequence of independent random variables associated with each interval.When a Gamma
process is employed to describe the resistance deterioration, the noise item ε(ti) in Eq. (2)
would follow a Gamma distribution, having a mean value of 1 and a standard deviation of√

ξ

d̂(ti)
, where ξ is a constant defining the uncertainty associated with G(t). This implies

that the overall shape of the variance of the deterioration function is fully dependent on
the mean deterioration function, which is untenable in many cases.
Mathematically, the item ε(ti) in Eq. (2) should be positive due to the physical con-

straints of a deterioration process. Note, also, that the mean value of ε(ti) equals 1 since
d̂(ti) defines the shape of degradation. Let μ• and σ• denote the mean value and stan-
dard deviation of the variable in subscript respectively. With this, under the assumption
of independent increments of the deterioration process, it follows,

μG(tn) = 1 −
n∑

i=1
d̂(ti) (3)

and

σG(tn) =
√√√√

n∑

i=1

(
d̂(ti) · σε(ti)

)2
(4)

In this paper, it is proposed that d̂(ti) and ε(ti) satisfy,

d̂(ti) = k · tmi · (ti − ti−1) (5)
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σε(ti) = p · tqi√
ti − ti−1

(6)

where k,m, p and q are four time-invariant parameters defining the scale and shape of
d̂(ti) and ε(ti). Substituting Eqs. (5) and (6) into Eqs. (3) and (4), as n → ∞, one has,

μG(t) = 1 − k
m + 1

tm+1 (7)

and

σG(t) = kp√
2m + 2q + 1

tm+q+0.5 (8)

Note that the parameter q in Eqs. (6) and (8) equals −0.5m if employing a Gamma
process, with which the shape of σG(t) would be dependent on μG(t), yielding a redun-
dant constraint for the relationship between σG(t) and μG(t). Eq. 8 also implies that the
proposed deterioration model is a generalized form of a Gamma process.
With Eq. (8), the correlation coefficient of G(tl) and G(tj) (1 ≤ j ≤ l ≤ n), ρl,j, is

determined by

ρl,j = σG(tj)

σG(tl)
=

( tj
tl

)m+q+0.5
(9)

Eq. 9 implies that the autocorrelation coefficient of resistance deterioration is affected
by both the shape of mean resistance degradation (c.f. the parameterm) and the variance
of resistance deterioration (c.f. the parameter q).
There are totally four parameters involved in the proposed deterioration model, namely

k,m, p and q. These parameters can be calibrated if the observed data for the resistance
deterioration are available. First, by fitting the overall trend (mean value) of the deterio-
ration process with respect to time t with the method of least squares, the parameter m
is determined by the shape of the time-variant mean deterioration according to Eq. (7).
For example, a linear deterioration shape gives m = 0 while a parabolic deterioration
shape results in m = 1. Simultaneously, the parameter k is obtained by the least squares
regression. Similarly, the remaining parameters p and q can be calibrated based on the
time-variant standard deviation of the resistance deterioration (c.f. Eq. (8)).
The item ε(ti) in Eq. (2) could be modeled as a Gamma, uniform, Beta or lognormal

random variable, among other distribution types for positive variables, depending on the
specific problems, considering the fact that ε(ti) is a positive variable by nature. For illus-
tration purpose, Figs. 1a and b plots some sampled trajectories of resistance deterioration
for a reference period of 40 years. It is assumed that m = 0.5, k = 0.0018 year, and
ti − ti−1 = 0.1 year, so that the deterioration function valued at the end of 40 years has
a mean value of 0.7. It is also assumed that σG(40) = 0.14 with a Gamma distribution for
each ε(ti). The parameter q is 0.5 in Fig. 1a and 1.5 in Fig. 1b, with which the remain-
ing parameter p in Eq. (8) can be calculated uniquely. The comparison between Figs. 1a
and b shows that, when the variance of G(40) is fixed, a smaller value of q results in a
greater variability of the deterioration process. This is explained by Fig. 1c, where the
time-variant standard deviations of the deterioration function are calculated with Eq. (8)
and are plotted for different values of q. By noting that q = −0.5m = −0.25 if using a
Gamma process, it is observed that a Gamma process-based deterioration model over-
estimates the variance of deterioration function if q > −0.5m and underestimates the
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Fig. 1 Illustration of the proposed resistance deterioration model. a and b Sampled deterioration trajectories;
c Time-variant standard deviation with different values of q; d Autocorrelation coefficient with different
values of q

variance if q < −0.5m. Figure 1d presents the dependence of the autocorrelation coeffi-
cient on the time lag. It is seen that a larger value of q leads to a smaller autocorrelation
in resistance deterioration.
Finally, the convergence of the proposed deterioration model is discussed. The term

convergence herein means that the probabilistic behaviour of the deterioration model as
defined in Eqs. (5) and (6) does not depend on the choice of ti − ti−1, provided that
ti − ti−1 → 0. Consider the characteristic function of G(tn) in Eq. (2), which, if exists, can
uniquely determine the probability distribution function ofG(tn) and vice versa (Billings-
ley 1986). Illustratively, assume that ε(ti) follows a Gamma distribution with a mean
value of 1 and a standard deviation given in Eq. (6). Let adε,i and bdε,i denote the shape
parameter and scale parameter of d̂(ti) · ε(ti) respectively, with which

bdε,i =
σ 2
d̂(ti)·ε(ti)

μd̂(ti)·ε(ti)
= kp2tm+2q

i (10)

and

adε,i =
μd̂(ti)·ε(ti)

bdε,i
= p−2t−2q

i (ti − ti−1) (11)
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Let φX(iτ) denote the characteristic function of random variable X, where i = √−1 is
the imaginary unit. Since d̂(ti) · ε(ti) is Gamma distributed,

φd̂(ti)·ε(ti)(iτ) =
(

1
1 − bdε,iiτ

)adε,i
=

(
1

1 − kp2tm+2q
i · iτ

)p−2t−2q
i (ti−ti−1)

(12)

By noting the independent increments of the deterioration process, the characteristic
function of 1 − G(tn) is given by

φ1−G(tn)(iτ) =
n∏

i=1
φd̂(ti)·ε(ti)(iτ) = exp

( n∑

i=1
lnφd̂(ti)·ε(ti)(iτ)

)

= exp
(

−
n∑

i=1
p−2t−2q

i (ti − ti−1) · ln
(
1 − kp2tm+2q

i · iτ
))

= exp
(

−p−2
∫ t

0
x−2q ln

(
1 − kp2xm+2q · iτ)

dx
)

(13)

Eq. 13 implies that the characteristic function of 1−G(tn) (and thusG(tn)) is independent
of the absolute value of ti − ti−1 provided that ti − ti−1 → 0. Specifically, if q = −0.5m in
Eq. (13), then

φ1−G(tn)(iτ) = exp
(

−p−2 ln
(
1 − kp2 · iτ) ∫ t

0
x−2qdx

)

= exp
(

−p−2 ln
(
1 − kp2 · iτ) · t1−2q

1 − 2q

)

=
(

1
1 − kp2 · iτ

) tm+1
p2(m+1)

(14)

which is the characteristic function of a Gamma distribution with a shape parameter of
tm+1

p2(m+1) and a scale parameter of kp2, consistent with the case of a Gamma process-based
deterioration model.

3 Time-dependent reliability assessment
For a bridge with a time-variant resistance R(t), let S(t) be the load effect at time t. The
bridge is deemed to be safewithin a reference period of [ 0,T] if R(t) ≥ S(t) holds for ∀t ∈
[ 0,T]. Correspondingly, the time-dependent reliability, denoted by L(T), is estimated by

L(T) = Pr{R(t) ≥ S(t),∀t ∈[ 0,T] } (15)

where Pr( ) is the probability of the event in the bracket.
A Poisson process can be used to model the occurrence of extreme load events (which

may impair structural safety significantly), taking into account the fact that significant
load events occur randomly in time with random intensities (Mori and Ellingwood 1993;
Wang et al. 2015). Let N be the number of load events that occur during the time inter-
val [ 0,T], at times t̃1, t̃2, . . . t̃N , and S

(̃
t1

)
, S

(̃
t2

)
, . . . S

(̃
tN

)
be the discrete load effects

accordingly. With this, L(T) in Eq. (15) becomes

L(T) = Pr
{
R

(̃
t1

)
> S

(̃
t1

) ∩ . . . ∩ R
(̃
tN

)
> S

(̃
tN

)}
(16)



Wang Advances in Bridge Engineering             (2020) 1:3 Page 6 of 9

If the load process is modeled as a stationary (homogeneous) Poisson process with an
occurrence rate of λ, the probability mass function of N is,

Pr(N = k) = (λT)k

k!
exp (−λT) , k = 0, 1, 2, . . . (17)

With Eqs. (1), (2) and (17), subdividing each interval
[
0, t̃j

]
into nj identical sections

(j = 1, 2, . . .N), the time-dependent reliability in Eq. (16) further becomes

L(T) = Pr

⎧
⎨

⎩

N⋂

j=1

[
R0 ·

(
1 −

nj∑

i=1
d̂(ti) · ε(ti)

)
> S(̃tj)

]⎫
⎬

⎭ (18)

Due to the difficulty of solving Eq. (18) numerically, a Monte Carlo simulation-based
approach is used alternatively to estimate the time-dependent reliability. The procedure
for each simulation run is summarized as follows.

1. Sample the initial resistance, denoted by r0, according to the probability distribution
function of R0.

2. Simulate a Poisson variable n with a mean value of λT , and subsequently the samples
of n uniform variables within [ 0,T], denoted by t̃1 < t̃2 < . . . < t̃n.

3. For each j = 1, 2, . . . n, subdivide the interval [ 0, t̃j] into nj identical sections,
generate ε(ti) for i = 1, 2, . . . nj and compute r

(̃
tj
)
according to Eqs. (1) and (2).

4. Corresponding to t̃1, t̃2, . . . t̃n, simulate n independent load effects, s
(̃
t1

)
,

s
(̃
t2

)
, ...s

(̃
tn

)
.

5. If s
(̃
tj
)
does not exceed r

(̃
tj
)
for all j = 1, 2, . . . n, then the bridge is deemed as

survival during [ 0,T] and otherwise failure.

Performing the above procedure for M times, if the structure survives for m times, the
time-dependent reliability is approximated bym/M asM is sufficiently large.

4 Application of the proposedmodel in structural reliability assessment
The applicability of the proposed resistance deterioration model in structural time-
dependent reliability assessment is demonstrated in this section. Consider a bridge
subjected to the joint effect of live load L and dead load D. The statistical information
of structural resistance and load effects is summarized in Table 1. Two live load cases
are considered, namely LL1 and LL2, with different coefficients of variation (COVs).
The combination of nominal live load Ln and nominal dead load Dn is determined by
1.0Rn = 1.25Dn+1.75Ln (AASHTO 2007), where Rn is the nominal initial resistance. The
occurrence of live load is modeled by a homogeneous Poisson process with an occurrence
rate of λ. It is assumed thatDn = Ln. It is noticed that the structural configuration consid-
ered herein is a simple representation and is for illustration purpose only; nonetheless it
reflects the basic design concept of an engineered bridge. When the proposed deteriora-
tion method is applied to the reliability assessment of a real bridge, the determination of
bridge’s resistance would likely involve a finite element analysis, taking into account the
bridge details such as structural type, span length, material strength, section geometry,
among others.
Figure 2 plots the bridge’s time-dependent failure probabilities subjected to LL1 for ref-

erence periods up to 40 years, using the deterioration model proposed in this paper. It is
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Table 1Models of resistance and load

Mean COV Distribution λ(yr−1)

Initial resistance 1.05Rn 0 Deterministic /

Dead load 1.00Dn 0 Deterministic /

Live load 1 (LL1) 0.45Ln 0.20 Extreme Type I 1.0

Live load 2 (LL2) 0.45Ln 0.45 Extreme Type I 1.0

assumed that m = 0.5, k = 0.0018 year, corresponding to the case that the deterioration
function valued at the end of 40 years has a mean value of 0.7, which is consistent with
the scenario in Figs. 1a and b. Each ε(ti) in Eq. (2) is assumed to follow a Gamma distri-
bution. The failure probabilities are obtained by Monte Carlo simulation using 1,000,000
samples. The standard deviation of the deterioration function valued at the end of 40
years, G(40), equals 0.14 in Fig. 2a and 0.21 in Fig. 2b. It is observed from Fig. 2 that a
longer reference period results in a larger failure probability as expected, due to the accu-
mulation of risks of structural failure. Furthermore, a greater value of q leads to a smaller
failure probability, and this effect is enhanced with a greater standard deviation of G(40).
This observation is consistent with that from Fig. 1c that a greater q gives a smaller varia-
tion of the deterioration process. It is also seen from Fig. 2 that if q < −0.5m, then using
a Gamma deterioration model will underestimate the structural failure probability; on
the other hand, the probability of failure will be overestimated by a Gamma model when
q > −0.5m.
The results in Fig. 2 are also informative of the bridge’s service life. For example, in

Fig. 2a, with a target failure probability of 0.01, the bridge’s service life is estimated as 25
years with q = −0.35. This implies that the structural performance is not satisfactory
beyond 25 years and thus needs relevant maintenance or repair measures. Furthermore,
the choice of the deterioration model affects the accuracy of the service life prediction
for the bridge. For example, in Fig. 2a, if the threshold for the failure probability is 0.01,
the bridge’s service life is predicted to be 25 years, 27 years and 33 years respectively with
q = −0.35,−0.25 and 1.5. The difference between the evaluations of bridge performance
indicates the importance of properly selecting a resistance deterioration model.
The bridge’s time-dependent failure probabilities considering the combination of dead

load and LL2 are presented in Fig. 3, where the structural configuration is as in Fig. 2. It

Fig. 2 Time-dependent failure probabilities for reference periods up to 40 years considering LL1. a
σG(40) = 0.14; b σG(40) = 0.21
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Fig. 3 As of Fig. 2 but considering LL2. a σG(40) = 0.14; b σG(40) = 0.21

can be seen that a greater variation of the live load results in a larger failure probability for
the bridge. Correspondingly, with the same target reliability, the predicted service life is
shortened by LL2. The impact of the deterioration model on structural failure probability,
however, is similar to the observations in Fig. 2.
The dependence of structural failure probability on the occurrence rate of live load is

presented in Fig. 4. The structural configuration is as in Fig. 2a except the value of λ. A
greater live load occurrence rate leads to a larger failure probability. For both cases in
Fig. 4, when λ ≥ 0.6, the structural failure probability increases approximately exponen-
tially with respect to λ. The impact of λ on the structural failure probability is weakened
when a longer reference period is considered. This is because at the latter stage the
structural reliability is dominated by the variation of the degraded resistance.

5 Concluding remarks
This paper has presented a new stochastic model for describing the resistance deteriora-
tion of aging bridges. The model is a modified version of the widely-used Gamma process
model, releasing the dependence of variance and autocorrelation of the deterioration pro-
cess on the mean value. This is achieved by introducing a new parameter that contributes
to the time-variant variance of the deterioration process (c.f. the item q in Eq. (8)). When

Fig. 4 Dependence of failure probability on the live load occurrence rate. a T = 20 years; b T = 40 years
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q = −0.5m, where m is the parameter reflecting the overall trend of the deterioration
process in Eq. (7), then the proposed deterioration model degrades to a Gamma process.
Analytical results show that the structural reliability is sensitive to the choice of resis-
tance deterioration model. If q < −0.5m, then using a Gamma deterioration model will
overestimate structural reliability; otherwise, the structural reliability will be underesti-
mated by a Gamma process-based deterioration model when q > −0.5m. The proposed
model is promising for use in time-dependent reliability assessment of aging bridges in
the presence of resistance gradual deterioration.
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