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Abstract 

The approximation of complex engineering problems and mathematical regressions 
serves as the authentic inspiration behind the artificial intelligence metamodeling 
methods. Among these methods, polynomial chaos expansion, along with artificial 
neural networks, has emerged at the forefront and become the most practical tech-
nique. Previous studies have highlighted their robust capabilities in solving complex 
problems and their wide utilization across numerous applications, particularly in struc-
tural analysis, optimization design problems, and predictive models of uncertainty 
outcomes. The aim of this article is to present a methodology that introduces their 
implementation of for structural engineering, primarily focusing on reinforced concrete 
bridges. The proposed approach consists of demonstrating the applicability of the pol-
ynomial chaos to evaluate the dynamic behavior of two-span reinforced concrete 
bridges through a predictive model of natural vibration properties for eigenvalues 
modal analysis. Subsequently, response spectral method is conducted according 
to the Moroccan guide for bridge seismic design and the prescription of the EUROC-
ODE 8 within the context of reliability assessment using Monte Carlo simulation. The 
efficacy of the proposed approach is illustrated by a comparison between the pre-
dicted vibration properties and the resulting values obtained through finite element 
modal analysis and artificial neural networks. The polynomial chaos process is based 
on a collected dataset of multiple reinforced concrete bridges sourced from technical 
studies offices and the Regional Administration of the East, affiliated with the Moroc-
can Ministry of Equipment and Water. Finally, this work contributes to the field 
by enhancing predictive modeling and reliability evaluation for bridge engineering 
using artificial intelligence metamodels.

Keywords:  Reinforced concrete bridges, Polynomial chaos expansion, Structural 
reliability, Bridge engineering, Structural dynamics, Monte Carlo simulation

1  Introduction
1.1 � Overview of the literature

Polynomial chaos expansion (PCE) has been widely applied in various fields, including 
finance, statistics, meteorology, and more engineering domains. The method is found 
to be a valuable tool for dealing with probabilistic outcomes and allows the making of 
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prediction models, uncertainty quantification, and sensitivity analysis. Polynomial chaos 
expansion is used to model and analyze systems influenced by uncertainty. Originally 
introduced by Norbert Wiener (1938) in the context of stochastic processes, the core 
idea of the polynomial chaos method is to represent a random process as a series of 
orthogonal polynomials of random variables, providing a systematic framework for deal-
ing with uncertainties. The versatility and robustness of the metamodel technique have 
led to its widespread application in civil engineering. It has been employed to model 
strength properties, predict structural responses under uncertain loading conditions, 
assess the reliability of structures, and perform dynamic analysis of systems subject to 
random vibrations and ground motion excitations. Relevant studies such as those by 
Sochala et  al. (2019), have demonstrated its utility where the expansion framework is 
used for geosciences to estimate the uncertainties of hurricane-induced storm surges by 
illustrating a predictive model based on a simulation of the flooding caused by Hurricane 
Gustav in 2008. The research by Saassouh et al. (2011) employs the polynomial method 
to model uncertainties in physical parameters governing the corrosion induction in steel 
reinforcement of concrete structures. The relevance of the study has been demonstrated 
on a highway bridge structure and compared to the probabilistic modeling findings 
using Monte Carlo simulation. For bridge engineering, polynomial chaos expansion have 
recently been implemented in multiple applications. Notably, the research of Pinghe Ni 
et  al. (2019), which represents a system of output characterized by the natural vibra-
tion properties of dynamic responses of bridge structures, the obtained results present 
high efficiency and good accuracy when compared to Monte Carlo simulation and First-
Order Second-Moment methods. In the same line, linked to safety concept and proba-
bilistic modeling, the study of Mosleh et al. (2018) focuses on the stochastic response of 
concrete bridges using a generalized polynomial chaos expansion while accounting for 
uncertainty in the stiffness of bearings and abutments. Pinghe Ni et al. (2023) propose a 
reliability assessment strategy by combining the polynomial chaos method and simula-
tion techniques for bridges under diverse loading conditions. The expansion is applied 
to approximate the performance functions and to compute the probability of failure. The 
methodology was applied to three structural application cases: a truss bridge, a beam 
under a moving load, and a reinforced concrete bridge subjected to a ground motion 
excitation. The obtained results yield an accurate estimation using Monte Carlo simula-
tion. The work of Novak et al. (2022) presents a semi-probabilistic methodology for the 
assessment of structures that is based on Gram–Charlier and polynomial chaos expan-
sion. The proposed approach is applied for the determination of the load-bearing capac-
ity of an existing prestressed concrete bridge. Additionally, The study of Yue Shang et al. 
(2024) proposes an adapted sensitivity method combined with polynomial chaos, which 
is used to approximate the output and alleviate the calculation cost in sensitivity analy-
sis of a truss structure and a dynamic train-track-bridge system. Related to structural 
reliability and uncertainty quantification, the surrogate technique has been adopted in a 
certain number of studies. Jun Xu et al. (2019) proposes a combined method of polyno-
mial chaos expansion with Voronoi cells and a dimension reduction technique for struc-
tural reliability analysis. The model was validated with four numerical examples where 
the findings show the efficiency of meta-models to perform structural reliability analysis 
with low computational cost. In the same context, Shi et al. 2011 propose a mechanism 



Page 3 of 25Lamouri et al. Advances in Bridge Engineering            (2024) 5:27 	

for reliability analysis that approximates the limit state function of the structural prob-
lem using the polynomial chaos metamodel. Then, the outcomes of the reliability 
analysis were consistent with the results of the Monte Carlo simulation, proving high 
efficiency. The study of Ming Chen et al. (2022) consists of employing polynomial chaos 
expansion for uncertainty modeling and sensitivity analysis. The authors present two 
numerical tests related to Fortini’s clutch with the Ishigami function and two cases of 
study considering a bar truss system and a roof truss. The obtained results are compared 
to Monte Carlo simulation, which presents good accuracy to solve nonlinear complex 
problems in structural engineering. As seen from the available literature, polynomial 
chaos has emerged as a powerful predictive tool for solving complex structural problems, 
in an alternative way to artificial neural networks, which are particularly advantageous 
due to their ability to model nonlinear relationships and handle large datasets effectively. 
As an example, the study of Hicham Lamouri et al. (2024) approves the effectiveness of 
neural networks in combination with the First-Order Reliability Method (FORM) and 
Monte Carlo Simulation to predict the flexural stress and estimate the failure probability 
for prestressed bridge beams. Then, the polynomial chaos expansion provides too a sys-
tematic path to handle uncertainties, perform sensitivity analysis, and approximate com-
plex responses, which offers distinct advantages in terms of computational efficiency and 
accuracy in uncertainty quantification. Therefore, in this study, affiliated with the Civil 
Engineering and Construction Laboratory of CEDOC-EMI, important aspects of relia-
bility and structural dynamics for bridge engineering are discussed within the concept of 
metamodels and artificial intelligence techniques. The paper builds upon presenting the 
prediction aspect of polynomial chaos expansion aligned with reliability dependent on 
dynamic analysis for bridges according to national and international earthquake design 
standards. While providing a better understanding by comparing the obtained findings 
to neural networks approximation and structural finite element model. The novelty of 
this work lies in the innovative combination of polynomial chaos and dynamic spectral 
analysis within the context of reliability engineering, leveraging the strengths of the met-
amodel to create a more robust and accurate predictive tool. This integrated approach 
not only enhances the efficiency and accuracy of reliability assessment but also provides 
a comprehensive framework for handling complex uncertainties in structural responses, 
especially for bridges. The effectiveness of the proposed methodology will be demon-
strated through its application to a two-span reinforced concrete bridge structure, for 
a modal eigen value estimation, highlighting its potential to significantly improve the 
dynamic evaluation processes in bridge engineering.

1.2 � Organization of the paper

The rest of this paper is organized as follows. In the Methods section, the theoretical 
background of the polynomial chaos expansion is presented and the study methodology 
for the practical structural application is introduced. In the Results section, the struc-
tural configuration of the reinforced concrete bridge case study and the data set used 
are presented, along with a detailed analysis of the eigen values obtained from the bridge 
dynamic model. The finite element modeling and analysis are discussed, followed by a 
reliability analysis based on the response surface methodology. The Discussion section 
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provides an interpretation of the results, and the Conclusion summarizes the key find-
ings and implications of the study.

2 � Methods
2.1 � Polynomial Chaos Expansion: Brief theoretical presentation

Polynomial chaos expansion (PCE), also known as Wiener Expansion, is admitted as a 
metamodel or surrogate-based method to determine the evolution of a system when a 
probabilistic uncertainty in its parameters exists.  The general concept and the under-
lying theory of the expansion method were introduced by Nobbert Wiener in (1938) 
and more elaborated by the Cameron and Martin theorem in (1947). It is considered a 
numerical algorithm that represents the parameters of interest as a polynomial develop-
ment in terms of certain basis functions. These basis functions are typically orthogo-
nal polynomials, such as Hermite, Legendre, or Jacobi polynomials. The key advantage 
behind the introduction of these polynomials is their desirable mathematical properties 
that facilitate efficient representation and computation. The major property is orthogo-
nality, which simplifies the computations of the system response in terms of the expan-
sion coefficients while respecting the distribution of the parameters. For more detail, see 
(Xiu 2002), and some numerical examples are provided in (Bruno Sudret 2007).

The general process of polynomial chaos expansion for uncertainty quantification is 
sketched in Fig. 1. Quantifying the response of a model involves defining the probability 
density distribution, statistically analyzing the results, predicting the desired quantities 
and estimating the probability of failure. Therefore, the objective of polynomial chaos 
extension is to simulate the response of a stochastic output variable as a function of sto-
chastic input variables. The general mathematical form of a polynomial chaos expansion 
for a one-dimensional model response f(X) can be written as shown in (1):

where Y represents the random variable to be modelled describing the output. X are 
the input variables. N represents the degree orders of the expansion while ϕi(X)  are 
orthogonal polynomial basis functions while respecting the probability distribution of 
the random parameters to ensure accurate representation and efficient computation. 
They constitute a basis of the probabilistic space associated with the input random 
variables (Kersaudy 2013) αi are the extension coefficients. These are determined using 
the orthogonality properties of chaos polynomials and can be computed by projection 
methods.

When a random function is developed as a series of orthogonal polynomials, this 
simplifies the calculations and makes the analysis more tractable. The families of 

(1)Y = f (X) =

N

i=0

αiϕi(X)

Fig. 1  The general process of Polynomial Chaos Expansion (Bruno Sudret 2007)
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orthogonal polynomials depend mainly on the type of distribution of the random 
variable and must satisfy orthogonality relations with respect to a certain probability 
measure according to the following condition (2):

where w(X) is a weight function. This property is essential because it allows a complex 
function to be decomposed into a series of mutually independent terms, making it easier 
to calculate the coefficients of the polynomial extension. The commonly used orthogonal 
polynomial families are given as follows (3–7):

• Monomial defined over the interval of the variables domain [a, b].

• Legendre Polynomial defined over the interval [-1, 1].

• Hermit Polynomial defined over the interval [-∞, ∞].

• Laguerre Polynomial defined over the interval [0, ∞].

• Jacobi Polynomial defined over the interval [-1, 1] with Beta function coefficients 
(⍺, β).

A detailed background on the theoretical foundations of polynomial chaos expan-
sion is provided by O’Hagan (2013). For a generalization over multidimensional vec-
tors with multiple inputs, the expansion of the polynomial chaos can be represented 
as follows (8).

where I is the set of all possible multi-indices i = (i1,i1 . . . , id) satisfying 0≤ik≤Nk for 
k = (1, 2, · · ·, d).αi are the expansion coefficients corresponding to the multi-index 
i = (i1, i1 · · · ,id) . ϕik (Xk) are the orthogonal polynomials chosen as basis functions for 
each input parameter Xk . Nk are the orders of the expansions for each input parameter, 
indicating the highest degree of the polynomial terms included in the expansions.

(2)
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2.2 � Study methodology

The principal approach of the study is to perform a comprehensive reliability assessment 
for seismic stress failure using the response spectral method on a reinforced concrete 
bridge. The first step involves analyzing the dynamic behavior of the bridge structure, 
which is modeled as a two-degree-of-freedom system in the longitudinal vibration direc-
tion. This dynamic behavior is characterized by the natural periods of vibration of the 
structure. To approximate these natural periods, the study employs polynomial chaos 
expansion for an approximated eigenvalues analysis. This method leverages the prede-
fined characteristics and the data set collected from various bridge configurations to 
ensure accuracy and relevance in the analysis. Following this, the study transitions to 
performing a reliability analysis based on the dynamic spectral method. This phase is 
crucial defining the limit state function of the reliability problem, as it involves defining 
regional seismic data and constructing a response spectrum curve. This last one, which 
is fundamental to seismic analysis, captures the peak response of the structure under 
different frequencies of ground motion. Practically, it is defined by the national and 
international standards of seismic design. Thus, by integrating regional seismic data, the 
study ensures that the analysis is adapted to the specific seismic conditions of the bridge 
site area in question. This step is vital for developing a consistent and realistic assess-
ment of the bridge’s reliability under seismic stress. The overall approach aims to provide 
a robust framework for understanding and ameliorating seismic analysis of reinforced 
concrete bridges while implementing artificial intelligence techniques such as polyno-
mial chaos expansion for the present study while considering the probabilistic aspect 
of design variables. The flowchart given in Fig. 2 presents the main steps of the overall 
thinking of the paper methodology.

3 � Results
3.1 � Structural configuration

The study consists to describe and to apply metamodeling based on the polynomial 
chaos surrogate method to evaluate the dynamic behavior of a set of bridges located 
in the province of Oujda Angad, East of Morocco, which is known for its modern 
seismicity according to the Moroccan seismic regulations code (RPS 2011). A bridge 
is always vibrating under the effects of several factors, including earthquakes. As 
defined previously in Sect.  2.2, the objective is to provide a predictive metamodel 
for computing the natural periods of longitudinal vibration of reinforced concrete 
bridges with two spans precisely. The determination of the structural natural period 
can be influenced by several multiple parameters, notably the bridge deck and the 
support parameters, as considered by some international seismic designs such as the 
European standard (EUROCODE8 1998) and the Algerian seismic regulations code 
(RPA 2003). The choice of the number of input variables depends on the complexity 
of the problem and the speed of compilation. As the number of structural elements 
making up the bridge is very large (girders, slabs, sidewalks, cornices, etc.) and their 
dimensions are very vast, it is useful to summarize all this into two parameters: the 
deck with pier masses, considering all the equipment weights M , and the stiffness K 
of the pier and bearings support system. To do so, these two parameters are set as 
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inputs in order to arrive at the output calculation, which is the natural period T . The 
structural configuration of the case study is a typical two-span reinforced concrete 
bridge composed of four beams with a span length of 18 m and a width of 11.22 m. 
The pier system is composed of a pier cap and three columns with a diameter of 1 m 
for each. Figs.  3 and 4 display a perspective view of the structure. The transversal 
profile of the bridge is given in Fig. 5, while Fig. 6 shows the longitudinal profile.

Fig. 2  Methodology flowchart

Fig. 3  Perspective view of the Reinforced Concrete Bridge Case Study—1
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3.2 � Eigen values analysis

The bridge system rests on a single pier with three columns in the middle and two support bear-
ings at the ends. The bridge is modeled as a two-degree-of-freedom system. The deck moves 
as a rigid body with mass M2 and is connected to the pier by the bearing as a spring-dumper 
system ( Ka,Ca ). Similarly, at both ends, the girders are supported by bearings. The pier with 
mass M1 has a stiffness Kp and damping coefficient Cp . Therefore, for the present study, the pier 
and deck are assumed to move in a plane in a longitudinal direction only. Fig. 7 illustrates the 
adopted dynamic model of the bridge. The modal eigenvalues analysis consists of solving the 
system at a free and undamping vibration. The formulation of the system of motion using the 
Lagrange principle (Landau 1994) is given as follows in (9), where T and V are the kinetic and 
potential energies, respectively. The derivative development is expressed in (10) and (11).

By setting the equations above in matrix form, the resulting system of equations is 
given as follows in (12), where M is the matrix of mass and K is the stiffness.

Then, the calculation of natural periods consists of resolving the determinant of the 
following system (13).

(9)
d

dt

(

∂L

∂ ẋ
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Fig. 4  Perspective view of the Reinforced Concrete Bridge Case Study—2
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Fig. 5  Transversal profile of the Reinforced Concrete Bridge Case Study (Pier and abutment)
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Fig. 6  Longitudinal profile of the Reinforced Concrete Bridge Case Study
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3.3 � Data set and results

The implementation of the polynomial chaos method first requires a consistent data-
base. The model was created utilizing previous experimental design data from various 
reinforced concrete bridges with the same type of case study. These data are collected 
from technical offices and the Regional Administration of East, affiliated to the Moroc-
can Ministry of Equipment and Water. The information about the required parameters 
and their ranges of variation is summarized in Table 1. The expansion process was con-
ducted using MATLAB. The definition of the appropriate degree of the expansion was 
carried out through numerical simulations using the following case orders: one, two, and 
three. The analysis of the data regression of each order from the expansion phases, led 

Fig. 7  Dynamic model of the bridge

Table 1  Data parameters and variation’s ranges

Type Description Unit Variation interval

INPUTS Number of columns - nc = [1; 2; 3]

Cross section Inertia of one column m4 0.003 ≤Ic ≤ 0.785

Height of the column m 4≤Hc≤10

Mass of the deck T 1454≤M2≤2497

Mass of the pier T 1.785 ≤ M1 ≤ 20.135

Bearing stiffness kN/m 18404≤Ka≤20000

Pier stiffness MN/m 1.28≤Kp≤1287.9

OUTPUT Period of 1th mode s 1.033≤T1≤1.522

Period of 2th mode s 0.014≤T2≤0.137
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to the adoption of a polynomial approximation of order 3 regarding the alignment of the 
resulting regression fitness with the ideal prediction line, characterized by a regression 
coefficient (R) according to the following formula (14).

In further, the obtained values of the regression coefficients and the mean square 
errors are shown in Table  2, and are illustrated in Fig.  8. It is worth noting that the 
mean square error (MSE) is calculated to obtain a mean value by squaring the differ-
ence between the targets Yk and the predicted values ̂Yk , divided by the data’s number, as 
expressed in Eq. (15).

The comparison between the three polynomial orders for the corresponding outputs 
is given in Figs. 9 and 10. In addition, Figs. 11 and 12 show the data’s regression for the 

(14)R =

√

√

√

√

√1−

∑N
k

(

̂Yk − Yk

)2

∑N
k (Y − Yk)

2

(15)MSE =
1

N

N
∑

k

(

̂Yk − Yk

)2

Table 2  MSE and Regression comparison of PCE orders

Order 1 Order 2 Order 3

MSE R2 MSE R2 MSE R2

0.0151 0.155 1.8e-04 0.98 6e-05 0.99

Fig. 8  Performance of PCE orders



Page 13 of 25Lamouri et al. Advances in Bridge Engineering            (2024) 5:27 	

adopted polynomial order of the corresponding eigenvalues. As follows, their predicted 
values for the case study inputs are detailed in Table 3. The computation process of the 
polynomial chaos expansion is performed using Legendre polynomial basis functions, 
which are advantageous because they ensure numerical stability and convergence prop-
erties, especially for high-dimensional problems. Legendre polynomials are defined on 
the interval [−1, 1] , this means the necessity to scale and shift the Legendre polynomials 
to fit the input variable intervals, which involves mapping each variable from its origi-
nal interval [ai, bi] to obtain the scaled version ρi of Xi into [−1, 1] using the following 
transformation (16).

Therefore, the mathematical formulation of the problem is given as follows (17).

(16)ρi =
2(Xi − ai)

bi − ai
−1

(17)T =

N1
∑

αi

N2
∑

α2

..

N7
∑

α7

αα1α2..α7Pα1 (ρi)Pi2 (ρ2)..Pi7 (ρ7)with :Pαi (ρi) =
1

2αiαi!

dαi

dρiαi
[(ρi−1)αi ]

Fig. 9  PCE Orders comparison for T1
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Where:

αα1α2..α7 The coefficients of the expansion

N1, N2,. . ..&N7 The maximum degrees for the Legendre polynomials for each input variable respectively

α1,α2, . . ..&α7 The degrees of the Legendre polynomials for each input variable

Nk The orders of the expansions for each input parameter, indicating the highest degree of 
polynomial terms included in the expansions

Pαi (ρi) The Legendre polynomial of degree αi for the ith variable Xi with the scaled value ρi

3.4 � Finite element modeling and neural networks

The finite element modeling carried out in this part of the study is for a modal analysis 
of the studied reinforced concrete bridge. The objective is to use finite element analysis 
to solve the eigenvalues problem to define the fundamental natural pulse, frequency, and 
period of the bridge vibration, and consequently the fundamental modal deformed shape 
as displayed in Fig. 13. In this part of the study, the finite element model of the structural 
bridge system was developed using SAP 2000 software. The model dimensions were based 
on the actual geometric specifications as viewed in the profiles of Figs. 4 and 5, with the 
overall structure measuring 18 m in each span’s length, 10 m in width, and 1.2 m in beam’s 
height. The structural components were modeled using two-dimensional shell elements 
(Shell-Thin) and three-dimensional frame elements (Frame), which are suitable for captur-
ing the behavior of both deck slabs and girder elements. A mesh convergence study was 

Fig. 10  PCE Orders comparison for T2
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conducted to determine the optimal element size, resulting in a mesh size of 1 m for the 
deck and girder elements. Boundary conditions were set to simulate realistic constraints, 
with fixed supports at the abutments and roller supports at the piers to allow for thermal 
expansion. Material properties were assigned based on standard concrete and steel speci-
fications, with concrete having a Young’s modulus of 33 GPa and a Poisson’s ratio of 0.2, 
with a compressive strength of 30 MPa, while steel had a Young’s modulus of 200 GPa and a 
Poisson’s ratio of 0.3.

As well, the neural network approximation is implemented on the bridges data set. The 
learning process is based on the Levenberg–Marquardt algorithm (Levenberg 1944), (Mar-
quardt 1963) with feed-forward back propagation using the RELU activation function. The 
adopted neural network architecture, as illustrated in Fig.14, has seven inputs with 2 hid-
den layers, considering 15 and 10 nodes for each, respectively, and one output layer (7–15-
10–1). The mathematical formulation for each hidden layer node and for the output could 
be written as given in the following expression (18):

where k is the node’s index, j is the index number of the hidden layer, n is the 
total number of nodes. HN

j
k is the hidden layer j with node k , wj-1

k  represents the 

(18)HN
j
k = max

(

0;

n
∑

i=1

w
j−1

k HN
j−1

i +bj−1;j

)

Fig. 11  PCE Regression for prediction of T1
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connection weight of node k between layer j − 1 to  j . While bj-1; j is the bias of 
the hidden layer j . The learning rate is fixed at 0.001. The training performance is 
described by the mean square error with a value of 2.42e-17, as given in the graph in 

Fig. 12  PCE Regression for prediction of T2

Table 3  Inputs and PCE outputs of the Case Study

nc Ic Hc M2 M1 Ka Kp T1(s) T2(s)

3 0.049 7.5 1876 14.81 18,981 113,065.8 1.2235 0.0981

Fig. 13  Longitudinal Fundamental Deformed Modal Shape (Mode 1)
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Fig. 14  Neural Networks Architecture

Fig. 15  Neural Networks training performance MSE
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Fig. 15 with a descending evolution. Then the resulting regression coefficient is equal 
to 99.7%.

The obtained values are compared to the results of the proposed polynomial chaos 
model. Fig. 16 presents the comparison in terms of probability distributions. Thus, Table 4 
presents the resulting values obtained using different methods and their corresponding 
error percentages relative to the reference value which is the algebraic modal eigenvalue. 
The relative error percentage (REP) is computed following the formula (19), where Ti is the 
approximated value of natural period with another method and TMod is the reference value 
obtained from modal calculation:

(19)REP =

∣

∣

∣

∣

∣

Ti − TMod

TMod

∣

∣

∣

∣

∣

× 100%

Fig. 16  Probability distributions of PCE and NN trained data

Table 4  Values of longitudinal fundamental period

Method of calculation T(s) REP %

Polynomial Chaos Expansion TPCE 1.22 4.27

Finite Element Analysis TFEM 0.91 22.23

Artificial Neural Networks TNN 1.24 6

Algebraic Modal Eigenvalues calculation TMod 1.17 -
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3.5 � Reliability analysis based response spectral method

The dynamic amplification factor is obtained from the elastic response spectrum of the 
EUROCODE 8 standard (EUROCODE8 1998) while considering the acceleration zon-
ing as seen in Fig. 17provided in the Moroccan project guide for bridge seismic (DRCR 
2009). The soil classification is considered according to the Moroccan earthquake code 
(RPS 2011). The elastic response spectrum is given as follows (20).

The corresponding studied structure is situated in Oujda City, and the correspond-
ing seismic zone is M4 with a mean peak ground acceleration of 1.35 m/s2. In addition, 

(20)



























0≤T≤TB : SR(T ) = PGA.S
�

2
3
+ T

TB
( 2,5q − 2

3
)

�

TB≤T≤Tc : SR(T ) = PGA. 2,5q S

Tc≤T≤TD : SR(T ) = PGA. 2,5q S
�

TC
T

�

TD≤T≤4s : SR(T ) = PGA. 2,5q S
�

TDTC

T 2

�

Fig. 17  Peak Ground Acceleration Seismic Zoning Map of Morocco (DRCR 2009)
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based on geotechnical investigations, the support soil is considered to be very dense soil 
and soft rock, which is a soil of class 1 in accordance to the Moroccan seismic regula-
tions code (RPS 2011) and by equivalence with the European code (EUROCODE8 1998), 
it is a soil of type B. Therefore, the soil coefficient is equal to 1.35. The predicted fun-
damental natural period is equal to 1.221. The justification rule is considered not to be 
respected when the dynamic stress exceeds the allowable concrete stressσc . In this situa-
tion, the failure probability is given by Pf = Prob

(

σdyn > σc
)

 . Then, the limit state for the 
seismic stress violation is formulated as follows (21).

Where:

fc28 28th day concrete compressive strength

Md Mass of the bridge deck 

D Pier diameter

TPCE PCE predicted fundamental natural period

TC&TD Spectral periods

PGA Peak Ground Acceleration

S Soil coefficient equal to 1.2

q Behaviour factor equal to 1.5

Reliability analysis for the corresponding failure criterion is conducted directly using 
the Monte Carlo simulation for 10e7 iterations. The statistical parameters of the prob-
lem variables are outlined in Table 5, and the resulting convergence of the probability of 
failure is depicted in the graph of Fig. 18. Fig. 19 shows Monte Carlo simulation samples, 
while Table 6 Presents the numerical results of the analysis. It is noteworthy that UQlab 
framework for uncertainty quantification (S. Marelli 2024) is used to perform reliability 
analysis with high efficiency and ease.

4 � Discussion
The significance of the study is demonstrated by the precision of the results obtained. 
Polynomial chaos expansion, in parallel to neural networks, presents an efficient way 
to get an idea of structure-dynamic behavior by simplifying the calculation of the nat-
ural vibration properties of reinforced concrete bridges. As remarked from the results, 

(21)G = 0.6fc28 −

[

32

(1.316D)3π
Md .

2, 5

q
S

(

TDTC
(

TPCE
)2

)

PGA

]

Table 5  Statistical parameters of variables

Var Unit PDF Nom Mean Std

fc28 MPa Log 35 35 7

PGA m/s2 Norm 1.35 1.35 0.25

Md T Determ 1876 - -

TPCE s Determ 1.2235 - -

TC s Determ 0.25 - -

TD s Determ 1.2 - -

D mm Determ 1000 - -
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the polynomial development is conditioned by the adequate choice of the polynomial 
order; the findings are more precise to an acceptable regression proportionally with a 
high order of three that led to a minimized mean square error with a value of 6.0144e-
05 and a regression coefficient of 99%. In addition, the influence of the basis functions is 
important.

In the study, Lagrange basis functions are adopted instead of the monomial and the 
other complex basis functions like Jacobi and Hermite, etc., for two principal reasons: 
good approximation with less computation cost. In fact, monomial is considered the 
simplest polynomial form, and it is not very competitive, especially when dealing with 
multiple inputs. On the other hand, complex polynomial functions present the draw-
backs of the high calculation cost considering the timing and especially the necessity to 
scale every variable to their definition domain. Accordingly, the Lagrange polynomial is 
adopted as an intermediate solution due to its numerical stability and good regression 
for multidimensional problems. The only hindrance was shifting the Legendre polynomi-
als to fit the input variables into their definition domain. Hence, the results demonstrate 
clearly the effectiveness of polynomial chaos metamodeling for predicting eigenvalue 
properties that characterize the dynamic behavior of reinforced concrete bridges.

Moreover, the predicted value of the fundamental period is compared directly with the 
resulting values obtained through finite element modeling and artificial neural network, 
as well to the analytical eigenvalue resolution. The polynomial chaos expansion method 

Fig. 18  Monte Carlo simulation—Probability of failure convergence
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provides a fundamental period of 1.22 s, resulting in an error of 4.27%. This small devia-
tion indicates that the method offers a relatively accurate prediction of the fundamen-
tal period. Similarly, the artificial neural networks method produces a period of 1.24 s 
with a 6% error, also reflecting a high degree of accuracy. In contrast, the finite element 
modal analysis gives a fundamental period of 0.91 s, which corresponds to an error of 
22.23%. This higher error relatively could be attributed to several factors. One possible 
reason is the sensitivity of the finite element model to the mesh quality and element type 
modeling. Additionally, the simplifications made in the finite element model, such as 
boundary conditions and material characteristics considering damping properties, can 
also influence the accuracy of the predicted fundamental period. Overall, the results 
are very comparable and present a more nuanced understanding of the practical util-
ity of surrogate modeling. Furthermore, ensuing the proposed methodology, the study 
extends to enhance the implementation of Weiner expansion in conjunction with Monte 
Carlo simulation for structural reliability of bridges, considering the seismic stress fail-
ure criterion, stepping the predicted fundamental period of the bridge vibration, and 

Fig. 19  Monte Carlo simulation – Samples

Table 6  Monte Carlo simulation—Reliability Analysis results

Reliability index Probability of failure (%)

0.8 21.4
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performing response spectrum analysis to define the corresponding limit state function. 
The reliability index converges to a value of 0.8, and the failure probability is approxi-
mately 21.4%. As an interpretation, it can be acceptable to admit the actual dimension-
ing of the pier system, but it does not ensure its functionality through the service life of 
the bridge within a safety domain because, in the major cases, it is desirable to have a 
probability of failure less than 10%. It is important to outline that the meaning of failure 
in this study does not mean collapse, but merely the violation of the stress justification 
criterion according to the normative code for the limit state function.

The strengths of the model lie in its ability to accurately predict dynamic vibration 
properties while minimizing computational costs. The model’s high precision, evidenced 
by the minimized mean square error, underscores its reliability in practical applications. 
Furthermore, the integration of the polynomial chaos method with Monte Carlo simula-
tion in the context of dynamic analysis enhances reliability analysis, ensuring compliance 
with seismic design standards and safety criteria. Our study’s advantages are highlighted 
by its precision and efficiency in predicting natural vibration properties, offering signifi-
cant advancements over traditional methods. While initially applied to reinforced con-
crete bridges, the methodology’s adaptability to other bridge types such as prestressed 
concrete bridges and steel bridges is feasible with adequate dynamic model definition 
and adjustments in data’s parameters considering the material properties and geomet-
rical characteristics of bridge components. This flexibility is supported by the statisti-
cal basis of polynomial chaos, minimizing dependence on bridge-specific details. While 
our results provide valuable insights into the use of the polynomial chaos technique, 
and although it is widely accepted, it is important to acknowledge certain limitations 
described by the necessity of a large amount of design data for higher approximation 
accuracy. Which also depends potentially on the increase in polynomial degree, making 
the process time-consuming to achieve a minimized mean square error and an accept-
able fit for the study’s data.

5 � Conclusion
The study presents a more intricate perspective on the practical use of polynomial chaos 
expansion to describe the dynamic behavior of reinforced concrete bridges character-
ized by predicting their natural vibration properties. Then the following conclusions can 
be drawn from this study:

•	 Efficient Eigenvalue Estimation: The adoption of metamodeling, particularly poly-
nomial chaos expansion, proves to be a highly efficient alternative for estimating 
eigenvalues compared to traditional methods such as solving determinants of motion 
matrix systems algebraically. This approach offers a more robust and computation-
ally efficient way to predict the natural vibration properties of reinforced concrete 
bridges.

•	 Reliability Analysis Enhancement: By integrating polynomial chaos with Monte Carlo 
simulation, the study demonstrates its utility in reliability-based response spectrum 
analysis. This method provides a rigorous framework for interpreting seismic design 
standards, ensuring safety through dynamic failure criteria. Such advancements are 
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necessary to improving the resilience of bridge structures under varying environ-
mental conditions.

It will be important for future work to consider the bridge as a multiple degree-of-free-
dom structure to improve precision in vibration analysis. This approach can anticipate 
eigenvalue calculations without the need for solving robust matrix systems, which are 
often expensive and time-consuming. Additionally, future perspectives should account 
for Dynamic Soil-Structure Interaction (DSSI), as it significantly influences the dynamic 
behavior of bridge structures.

Finally, this study contributes significantly to the field of structural engineering and 
reliability by advancing the application of polynomial chaos expansion offering valuable 
viewpoints for both researchers and structural engineering practitioners.
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