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Abstract 

Bridge deck condition assessments are typically conducted through visual inspec-
tions and by incorporating traditional contact sensors for Non-Destructive Evaluation 
techniques such as hammer sounding and chain dragging, which require the keen 
expertise of trained inspectors. The accuracy of these inspections is proportional 
to the level of deterioration of the bridge deck, as the ability of the inspectors is cor-
related to the apparent level of damage. This study aims to improve the accuracy 
of bridge deck inspection processes by utilizing non-destructive evaluation techniques, 
including analyzing point cloud data gathered via Light Detection and Ranging (LiDAR) 
as a geometry-capturing tool for identifying surface irregularities. This research aims 
to evaluate and quantify the effectiveness and efficiency of LiDAR sensors in contribut-
ing to the suite of technologies available to perform bridge deck condition assessment. 
To achieve this, the research proposes to understand the deterioration pattern of New 
Jersey bridges, evaluate the results gathered from point cloud data collected on a full-
scale bridge deck, and quantify the information gained from deploying LiDAR on oper-
ating bridges in New Jersey. Two data processing approaches were chosen to measure 
the gross and fine dimensions of the evaluated bridge decks, such as the Curvature 
Extraction and Slope Analysis method, and the Least Square Plane Fitting method, 
resulting in an accuracy of 97.92% in reference to the results gathered from reports 
generated through the analysis of state-of-the-art NDE technology data and visual 
inspection.
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1  Introduction
There are over 617,000 bridges in the United States. Currently, 42 percent of them 
are over 50 years old, and 7.5 percent, or 46,154, are in poor condition (ASCE, 2021); 
with the rapid deterioration pattern of bridge decks, implementing new reliable non-
destructive evaluation (NDE) techniques is essential to maintain the structural health 
of reinforced concrete (RC) bridge decks by detecting early stages of deterioration and 
avoiding its continued detriment. Research done on bridge condition assessment shows 
that the use of point cloud data captured via Light Detection and Ranging (LiDAR) dur-
ing construction (new or rehabilitation) can help to (a) estimate the location of the rebar 
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in the concrete deck by scanning during the construction stage (Abdelkhalek and Zayed 
2020); (b) estimate rebar covers by comparing as-built scans to construction scans ( Abu 
Dabous et al. 2017); and (c) locate low points on the deck’s surface where water can sit 
by analyzing point cloud data (Alla and Asadi 2020). These aspects are critical factors in 
the performance of bridge decks, potentially causing early deterioration and shortening 
their service life.

Bridge inspection is addressed through visual inspections and advanced testing tech-
niques. Visual inspections are typically executed by trained inspectors who search for 
deterioration in the form of cracks, steel corrosion, concrete spalling, section loss, defor-
mations, and other deficiencies that can impact the structure’s performance. Advanced 
testing techniques, such as non-destructive testing (NDT), complement visual inspec-
tions and provide more detailed information about the bridge’s structural integrity. 
NDT methods include Ground Penetrating Radar (GPR), Half-cell Potential (HCP), and 
Electrical resistivity (ER) inspections. In recent years, new technologies such as LiDAR 
and drones have also been progressively used for bridge inspections, providing quantita-
tive information on the bridge’s condition and allowing for more efficient and accurate 
assessments. Overall, bridge inspections play a critical role in ensuring the safety and 
longevity of bridges, and continued advancements in inspection techniques and tech-
nologies are essential for maintaining the nation’s infrastructure.

This research presents the results of an analysis performed on point cloud data of 
bridges in New Jersey, USA, demonstrating the applicability of LiDAR sensors for the 
condition assessment of bridge decks. The first phase of this study consisted of gather-
ing point cloud data on eight (8) bridges in the same region, which had varying deck 
conditions ranging from 3 to 9 on a 0 to 9 scale. According to FHWA’s Recording and 
Coding Guide for the Structure Inventory and Appraisal of the Nation’s Bridges (FHWA 
1995), concrete decks must be examined for cracking, scaling, spalling, leaching, chlo-
ride contamination, potholes, delamination, and full or partial depth failures before the 
structure is given a rating. Ratings of 0, 1, 2, 3, or 4 are associated with structurally poor; 
as condition 4 represents Poor, a rating of 3 depicts a Serious Condition, 2 means that 
the bridge deck is in a Critical Condition, 1 identifies as an Imminent Failure Condition, 
and 0 implies a Failed Condition; while a rating of 5–9 indicates that the bridge deck has 
some signs of deterioration but is generally in good condition with only minor defects or 
damage that do not require immediate attention; as 5 refers to a Fair Condition rating, 
6 shows a Satisfactory Condition, 7 indicates Good Condition, 8 represents Very Good 
condition, and 9 signifies Excellent Condition. However, it is essential to note that even 
decks rated 5–9 require regular maintenance and monitoring to prevent further deterio-
ration and ensure their continued safe operation.

The first phase of this research aimed to identify critical aspects that accurately 
predict deterioration rates and extend the bridge deck’s service life. Low-rated decks 
were selected to prove the correlation between the bridge deck profile and the con-
dition rating. At the same time, high-rated bridge decks were chosen to apply the 
knowledge gained from the deterioration correlation pattern. In the second phase, six 
(6) additional bridges in New Jersey were scanned to increase the reliability of the 
information gained and to develop a bridge deck deterioration trend based on Bridge 
Deck Characterization, a technique developed during this research. The common 
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factors between the bridges scanned were steel girders, concrete decks, single or con-
tinuous two-span configuration, and similar Average Daily Traffic (ADT) and Average 
Daily Truck Traffic (ADTT). These characteristics derive from an extensive literature 
review and analysis performed on historical bridge condition data, which allowed us 
to investigate further the deteriorating pattern of bridge decks in New Jersey. This 
data was extracted from the National Bridge Inventory (NBI) repository in the Info-
bridge website managed by the Federal Highway Administration (FHWA).

This research seeks to contribute to implementing point cloud data as a screening 
tool that can be rapidly deployed in combination with the suite of NDE techniques 
available for bridge deck inspection effectively and addressing early, efficient, quali-
tative, and quantitative bridge deck deterioration detection. A tool that can quickly 
and reliably generate point cloud data of targeted structures is the LiDAR sensor. 
LiDAR is a remote sensor that shoots beams of light to the evaluated object to cre-
ate a 3D point cloud. The sensor uses the time it takes for the light beam to touch the 
object and return to the sensor, combined with the vertical and horizontal rotational 
angles of the scanner at the moment of emission, to calculate X, Y, and Z coordinates 
for each light pulse. Finally, combining the recorded points creates a point cloud 
of the scanned object. For this study, a FARO 150 S was used to collect the subject 
bridge’s point cloud data for this case study. The operational processes of standard 
LiDAR scanners involve the emission of laser beams over a range of 300° (vertical) 
by 360° (horizontal) on a step with angular distances that can be as small as 0.009° 
(1.57E-4  rad), providing a maximum resolution of 111 points per degree angle. The 
scanner’s precision is 1 mm in a 10 m range, and the effective range is 150 m (FARO 
2021). The originated pulses bounce back from the object’s surface to the scanner. 
Then, points are registered on a global coordinate system based on the pulses’ time 
of flight and the vertical scanner’s distance and horizontal rotational angles. Figure 1 
shows (a) the operational principle of a typical LiDAR scanner, and (b) a sample of 
one of the concrete bridge decks scanned for the completion of this research.

LiDAR is also referred to as Laser Altimetry Detection and Ranging (LADAR), 
which, similarly, is a remote sensing technology that uses intense, focused beams of 
light to detect reflections and measures distance by estimating the time it takes for 
the beam of light to be emitted, bounce from the scanned surface, and return to the 

Fig. 1  a Operational principle of a LiDAR scanner; (b) Sample of a point cloud of a concrete bridge deck 
surface
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scanner. In the same realm of technologies, Radio Detection and Ranging (RADAR) 
uses continuous radio waves instead of discrete laser light pulses.

2 � Background
NDE technologies are used to detect potential damage or defects in concrete structures 
without causing any harm to the material itself. Each NDE technology has a unique 
physical concept that enables it to identify deficiencies. Half-cell potential (HCP) meas-
ures the electrochemical potential of reinforcing steel within the concrete to detect the 
early stages of corrosion (Elsener et  al. 2003). Ground-penetrating radar (GPR) uses 
high-frequency electromagnetic waves to detect interfaces or discontinuities within the 
material, allowing engineers to locate features such as rebar, post-tensioning cables, and 
voids (Hugenschmidt and Loser 2008). Electrical resistivity (ER) measures the electri-
cal resistivity of concrete to identify areas where the concrete may be weaker or more 
susceptible to damage (Chouteau and Beaulieu 2002). Impact echo (IE) generates stress 
waves within the evaluated member using a mechanical impact, which sensors can 
detect on the surface to determine the concrete’s thickness and locate potential damage 
or defects (Scherr and Grosse 2021). Using these NDE techniques, engineers and techni-
cians can select the appropriate method for a given application and interpret the results 
accurately to ensure the safety and longevity of concrete structures. Expanding modern 
NDE techniques can help mitigate some drawbacks of traditional inspection methods. 
A critical shortcoming of current NDE methods is the lack of geometry data available. 
The common practice combines NDE technologies with traditional measurement tools 
to reference collected data. This can be better addressed by implementing geometry cap-
turing tools, such as LiDAR sensors, which can capture the external deterioration of ele-
ments, and their point cloud data can serve as a platform for the 3D representation of 
other information gathered via NDE methods. This research utilizes point cloud data 
captured via LiDAR as part of an NDE suite and the linking platform, ultimately serving 
as a predictive bridge deck condition assessment tool.

2.1 � LiDAR for structural health monitoring of bridges

LiDAR has increasingly gained recognition for bridge structural health monitoring 
(SHM), focusing on characterizing the geometric features of components like girders 
and decks. One common application is to measure the vertical clearance under bridges 
to ensure safe passage for large vehicles (Kaartinen et al. 2022). LiDAR has also examined 
the relationship between environmental factors, loading, temperature, precipitation, and 
bridge deformation. Some studies have also employed LiDAR to detect structural dam-
ages, such as spalling and cracks. For instance, Teza et al. (2009) proposed an automated 
method for identifying mass loss in concrete bridges using a Terrestrial Laser Scanner 
(TLS), which involved three steps: (1) subdividing the point clouds into sub-areas; (2) 
applying Gaussian filtering and parabolic fitting to each point; and (3) classifying each 
sub-area as damaged or undamaged based on the curvature distribution. Researchers 
have investigated various uses of LiDAR technology for bridge evaluation and moni-
toring. One study used a phase-based laser system to compare distance and gradient-
based methods for quantifying material loss in a bridge (Liu et  al. 2010). Combining 
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these methods improved the capability of LiDAR for identifying and quantifying defects. 
Another study developed an automatic technique for measuring bridge clearance using 
TLS, which achieved millimeter-level accuracy (Liu et  al. 2012). While Watson et  al. 
(2012), evaluated the impact of various parameters on bridge clearance measurements 
using periodic TLS scans, while Liu & Chen (2013) assessed the applicability and reli-
ability of LiDAR for bridge health monitoring through sensitivity analyses on a full-scale 
bridge, including tests of range measurement ability, the accuracy of the scanner, and 
automatic inspection algorithms.

In a study by Riveiro et al. (2013), a method was introduced for measuring the mini-
mum vertical clearance of bridges and obtaining the profile of prestressed concrete 
beams using photogrammetry and TLS surveys. To estimate the vertical clearance and 
beam cambers, a 3D curve-fitting algorithm was developed, which achieved high sta-
tistical correlation coefficients when implemented on a full-scale bridge. Geometrical 
information of bridges, including elevation, span length, girder spacing, bottom flange 
width, and web height, was recorded by a LiDAR (Dai et al. 2014), and the girder deflec-
tions were calculated by comparing the girder elevation coordinates of the scans with 
and without truck weight. The proposed approach proved more accurate and accessible 
than contact methods, even in estimating the bridge’s natural frequencies. In addition, 
a fully automated TLS point cloud segmentation procedure was developed by Riveiro 
et al. (2016) for the SHM of masonry arch bridges. The proposed algorithm used a vox-
elization process to filter out redundant data and used topological constraints to estab-
lish individual structural elements’ spatial relation and order. An automated processing 
method of point cloud data applied for SHM of masonry arch bridge piers suggested that 
the algorithm showed coherent results with minor issues due to poor point cloud quality 
when tested on five datasets. They segmented a full-scale bridge into its structural com-
ponents and identified structural faults by analyzing the geometric parameters of pier 
faces and their topological relationship with other bridge elements.

SHM technology for masonry bridges using TLS data and GPR was presented by 
Pérez et al. (2018), where they compared TLS measurements with historical drawings to 
identify anomalies in hyperbolic reflections and determine the bridge filling configura-
tion. Ziolkowski et  al. (2018) introduced a TLS-based framework for detecting struc-
tural deformation in composite footbridges. They generated two mesh models using 
the Fast-Marching algorithm and compared them to check for changes after applying 
a load to the bridge. Kim et al. (2018) investigated a crack identification and quantifi-
cation approach for concrete structures using unmanned aerial vehicles (UAV). They 
generated a point cloud-based background model of the structure, applied convolutional 
neural networks to high-resolution images for crack detection, and used transfer learn-
ing from 384 crack images for classification and localization on a full-scale bridge. Cha 
et al. (2019) proposed a deflection and deformation measurement application for bridges 
using a shape information model constructed from the improved octree data structure 
and TLS data, where the deflection was estimated based on the octree space division 
and validated using linear variable differential transformer (LVDT). The research devel-
oped a new bridge inspection technique using UAV imagery point clouds, constructing 
a triangular mesh and density map to reduce errors in data. The iterative closest-point 
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algorithm was applied with TLS data to measure thickness, point distribution, and 
point-to-point distances for a full-scale bridge.

Lee et  al. (2019) introduced a reflector-based framework for measuring long-term 
bridge displacement using LiDAR. The framework included a reflector positioning strat-
egy, measuring the reflector coordinates, and calculating the displacement. The pro-
posed method was validated through the test of a prestressed concrete bridge. Liu. et al. 
(2019) used TLS to construct a Digital Surface Model and identify the potential dam-
age area of a bridge. Ground-based microwave interferometry was used to confirm the 
damage, and interferometry synthetic aperture radar (INSAR) was applied to analyze the 
causes of the damage to a full-scale bridge. Bolourian and Hammad (2020), introduced 
a 3D path-planning technique for LiDAR-equipped UAVs to inspect bridges, involving 
three steps: (1) assigning essential values based on the moment and shear force values 
from structural analysis, (2) selecting Viewpoints of Interest for perpendicular and over-
lapping views, and (3) calculating the optimal collision-free path using a Genetic Algo-
rithm and A* algorithm. After testing on a full-scale bridge, the method reduced flight 
time, processing time, and workload while enhancing visibility, reliability, and accu-
racy. Erdélyi et al. (2020), developed a deformation monitoring method using TLS and 
ground-based radar interferometry data, which was also tested on a full-scale bridge. By 
comparing the two methods, the authors found similar results. Cha et al. (2020), pro-
posed a displacement estimation method for bridge structures using four laser scanning-
based techniques. The method involved rearranging points in a 3D space and creating 
nodes to calculate the displacement. The proposed method reduced the time required 
for displacement estimation but increased data processing time compared to other 
approaches.

The literature review analysis presents how point cloud data captured via LiDAR is 
progressively being incorporated as an NDE technology that, with the use of state-of-
the-art methods and algorithms, can be implemented to assess the condition of primary 
structural bridge components such as girders and, for measuring large- and small-scale 
dimensions to assess the condition and integrity of the overall structure. Yet, there is a 
persistent knowledge gap that would increase the reliability of using point cloud data for 
assessing bridge decks, which refers to the relationship between deformations and dam-
ages found on the element’s surface with its internal condition. Hence, the decision to 
pursue this research project.

2.2 � Validation testbed

A fully instrumented, full-scale bridge was chosen to collect information as a validation 
dataset. Detailed information on the results gathered from the full-scale bridge is pre-
sented in the following section. The specimen is the 50-foot single-span bridge tested 
in the Bridge Evaluation and Accelerated Structural Testing (BEAST) lab at Rutgers 
University. The tested specimen, which is deteriorated under a controlled environment 
(load, temperature, humidity), is instrumented with strain gauges, displacement gauges, 
accelerometers, and internal humidity sensors. The specimen was subjected to a series 
of inspections along the test. NDE data was collected (e.g., HCP, GPR, IE) to correlate 
the results to the amount of deterioration imposed. In addition, LiDAR was deployed to 
capture the deteriorated condition at each inspection performed.
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This test specimen consisted of four steel-rolled beams of W27 × 84, covering a 
total span of 14,61 m (47ft-11 ¼in). The four lines of diaphragms were composed of 
C15 × 33.9 sections. On top of the girders, a haunch that varied from 2,54 cm (1 in.) 
deep at Abutment 1 (fixed end) to 7,62  cm (3 in.) deep at Abutment 2 (expansion 
end) received the concrete deck, which had a total length of 15,27 m (50ft-1 ¼in) and 
an out-to-out width of 8,23  m (27ft.). Two curbs of 43,815  cm (1ft-5 ¼ in) wide by 
15,24  cm (6 in.) deep ran along the top outside edges of the deck, leaving a curb-
to-curb distance of 7,35 m (24ft-1 ½ in). The BEAST test specimen was subjected to 
continued deterioration inside the lab’s chamber, including live load cycling, freeze–
thaw, and brine water spray. Figure 2 presents a point cloud of the BEAST lab with 
the bridge specimen on an elevation heat map. The NDE data collection was per-
formed throughout the length of the test at different deterioration stages. LiDAR data 
was collected: (a) during the construction of the bridge, recording the as-built dimen-
sions, (b) during an intermediate deterioration stage, and (c) at the end of the first 
phase of the BEAST specimen project.

3 � Methodology
It was hypothesized that the deterioration stage of bridge decks is correlated to the 
damage observed on the deck’s surface. Therefore, the condition rating could be 
determined based on the characterization of the state of damage. To ensure a success-
ful project, the team took the following steps: (1) literature review: since the facili-
ties used for the validation data set involved the analysis of a full-scale single-span 
steel-girder bridge, the literature review focused on the deterioration patterns of steel 
girder bridge decks to minimize the number of variables; (2) condition assessment of 
a full-scale bridge deck deteriorated in a controlled environment: the Bridge Evalua-
tion and Accelerated Structural Testing (BEAST) lab at Rutgers University’s Center 
for Advanced Infrastructure and Transportation (CAIT) facility was performing the 
accelerating testing, through the implementation of traditional non-destructive eval-
uation (NDE) methods such as HCP, GPR, ER, USW, IE, and the addition of point 
cloud data captured via terrestrial LiDAR; (3) scanning via terrestrial LiDAR of bridge 

Fig. 2  Point Cloud of the BEAST bridge specimen
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decks in New Jersey to evaluate the potential correlation and applicability of the pro-
posed approach; (4) implementation of two point cloud data processing methods to 
quantify the areas of damage; (5) comparison of the results gathered from the New 
Jersey bridges with the trend found on the validation data set.

4 � Overview of the data processing methods
The point cloud data collection methodology consisted of placing the scanner at differ-
ent locations surrounding the bridge specimen to capture the deck’s surface. Then, the 
scans are registered through the scanner’s software, Faro SCENE; this process was per-
formed by referencing targets (white spheres 23 cm in diameter) placed at strategic loca-
tions during data collection and through superposing the plan view of the point cloud. 
The registered point cloud data was processed and analyzed using software tools such as 
CloudCompare and Excel through two different approaches that allowed to characterize 
the geometry of the deck: (a) Curvature Extraction and Slopes Analysis, and (b) Least 
Square Method Plane Fitting. The results analysis can identify low points on the bridge 
deck surface where water can accumulate, which allows maintenance and repair opera-
tions to be planned.

4.1 � Curvature Extraction and Slope Analysis (CESA) method

This project evaluated the presence of various aspects using the point cloud data col-
lected for each bridge deck. These aspects include: (a) Rutting percentage: expressed as 
a percentage of the deck’s total area and indicate the extent of rutting; (b) Percentage 
of overall potholes: expressed as a percentage of the deck’s total area and indicate the 
extent of potholes; (c) Section loss at joint locations: expressed as a percentage of the 
deck’s area and indicate the amount of section loss at the joints; (d) Longitudinal curva-
ture: each deck will be analyzed to determine whether there is a correlation between low 
points in the deck and the condition stage; and I Transverse curvature: the transverse 
slope will be compared to the evaluate the presence of the recommended 2% slope on 
the bridge decks and ensure proper water drainage. Figures 3, 4 and 5 show where the 
longitudinal and transverse cross sections were taken from the testbed bridge deck. This 
approach was taken to better visualize the d’ck’s curvature, first explored and analyzed 
through the elevation heat map in Fig. 3. The CESA was applied to all the bridge decks 

Fig. 3  Plan view of the testbed and location of transverse and longitudinal cross-sections
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evaluated in this study. To produce the information presented in Figs. 4 and 5, three lon-
gitudinal lines were selected: one near the left edge (“Side B”), one at mid-section, and 
one near the right edge (“Side A”), and three transverse lines were selected: one near 
the southern support (“Bottom”), one at mid-span, and one near the northern support 
(“Top”). The distance between the data points was set to approximately 0.40 m. A plan 
view of these lines are presented in Fig. 3 to facilitate their reference within the deck.

The longitudinal sections presented in Fig. 4, demonstrate the curvature of the profile 
of the bridge deck. A low region is present at midspan, especially in sections Long Mid 
and Long Side A, which is an area that potentially serves for water to sit longer due to 
its inability to run off the deck. The same analysis can be drawn from the transverse 
curvature shown in Fig.  5, where the bridge deck presents flat and concave sections, 
with a deeper depression in the Trans Mid section. The geometry data presented above, 
and throughout this research is possible given that the point cloud data generated via a 
LiDAR sensor, provided X, Y, and Z coordinates of each data point.

Fig. 4  Deck’s longitudinal sections

Fig. 5  Deck’s transverse sections
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4.2 � Least Square Plane Fitting (LSPF) method

After analyzing the curvature and slope of the deck, where multiple cross-sections were 
evaluated, a second data analysis approach was taken to better characterize the dam-
age condition. For this, horizontal projections and plane fitting were completed, show-
ing areas of interest where distances from the fitted planes were -36 mm (-1.4 in.) below 
the fitted planes, indicating an accentuated depression. Figure  6 presents an elevation 
heat map of the deteriorated testbed bridge deck (data collection date: 10 Oct., 2022), 
where it is clear that potholes were already developing on the surface of the deck. Once 
this potentially damaged area was isolated, the points below -6  mm (-0.24 in.) were 
highlighted and classified as actual damage. This criterion assumes that the surface 
roughness of a concrete bridge deck is between 3 and 5 mm (0.16 in.), then a surface 
irregularity of 6 mm would represent approximately two times the roughness. Figure 7 
compares the study area, highlighting the points classified as damaged.

Fig. 6  Plan view of the deck by elevation

Fig. 7  Isolated damaged area representing 1,022,188 points
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5 � Test specimen results
5.1 � Visual inspection Vs. Point cloud data

The Visual Inspection regarding the results presented in this section was obtained 
during the same testing cycle when the point cloud data was collected; therefore, 
both inspection methods correspond to the same deterioration stage of the deck. The 
inspection reports obtained for the testbed showed that the deck had a condition rat-
ing of 5 (Fair). This classification was reported as a total area of damage of 3,25 m2 (35 
sq.ft.) of spalls equal to or deeper than 2,54 cm (1 in.) or > 15,24 cm (> 6 in.) in diam-
eter. The images from the Visual Inspection report captured in July 2021 can be seen 
in Fig. 8. Even though Fig. 8 shows water on top of the deck’s surface, this water was 
removed to perform point cloud data collection, since the LiDAR scanner utilized for 
this inspection cannot pass through water, which would alter the resu’ts’ quality.

A summary of the inspection report for the testbed deck condition rating can be 
seen in Table 1. This table indicates the amount of damaged area identified during the 
visual inspection. Where the level of damage is indicated and described for each con-
dition rating (e.g., spall > 2,54 cm (> 1 in.)). The testbed has a 7.35 m × 15.27 m deck 
forming a total area of 112.23 m2 (1208.03 sq.ft.). Even though the underside of the 
deck was evaluated during Visual Inspection, Point Cloud data was not collected as 
the proj’ct’s objective focuses on evaluating the deck’s surface. Thus, further analysis 
was conducted between both inspection methods concerning the deck’s underside.

The analysis of the validation testbed was conducted on a specific area of the bridge 
deck identified as the area of interest due to its progressive damage and concaved 
surface identified in previous scans. The analysis was focused on comparing the dam-
aged location assessed via visual inspection (e.g. inspection reports), which indicated 

Fig. 8  Visual inspection images from the inspection reports of the testbed (a) Small to large spalls looking 
east 3,25 m2 (35 sq.ft.); (b) large spalls looking south 2,32 m2 (25 sq.ft.)

Table 1  Bridge deck (58) Visual inspection report from the BEAST Bridge Inspection reports 
indicating damages

RATING COMPONENT REMARKS

5 Wearing Surface (1/2″ Integral wearing surface) One large area of moderate scaling near the mid-
span east half of the deck (180 SF). Some minor scaling at random locations (30 
SF). Some pop-outs and insignificant cracking at random locations

5 Top of Deck Some deep spalls (> 1″), mostly with exposed rebar near the mid-span of the deck 
(35 SF total)

8 Underside of Deck Bay 1: SIP forms with isolated rust along the connection to the top flange of the 
girder. Bays 2 & 3: Reinforced concrete with no significant defects
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3,25 m2 (35 sq.ft.) of damage on the top of the deck of spalls > 2,54 cm (> 1 in.) deep 
or > 15.24 cm (> 6 in.) in diameter; which from the total area of the deck, equivalent 
to 111,02 m2 (1195 sq.ft.), represent 2.93% of area of damage. The results of the point 
cloud analysis showed a total of 1,022,188 points identified as damaged points out 
of the 36,085,551 points in the entire bridge deck’s point cloud, which indicates that 
the damage represents 2.83% of the bridge d’ck’s total area, or 3,14 m2 (33.81 sq.ft.), 
a 96.6% accuracy when compared to the assessment made through visual inspection. 
These results suggest that the analysis of the testbed is a reliable method for identify-
ing and quantifying damage on bridge decks. A summary of these results is presented 
in Table 2.

The percent of damage of each inspection method was calculated by dividing the area 
or points corresponding to the identified damage by the area or points corresponding to 
the total surface of the deck. Equation (1) was used to relate the percent of damage iden-
tified via PC to the one reported on the VI.

5.2 � Non‑destructive evaluation vs. Point cloud data

This research utilized the information gathered from the BEAST Laboratory test speci-
men to validate the results from point cloud data captured via LiDAR. This comparison 
allowed us to understand the correlation between internal element transformation and 
external symptoms of the bridge deck due to the continued deterioration. The develop-
ment of clear correlation trends was possible given the amount of NDE data available 
at different deterioration stages of the test specimen. By comparing the Point Cloud 
results with the inspection reports for the test specimen, we demonstrated the data’s 
accuracy and the potential for this approach as a screening tool to reduce the need for 
the immediate costly deployment of a suite of technologies that would also cause traffic 
disruption.

A detailed analysis of the comparison of the suite of NDE data collected from the 
testbed versus the point cloud data captured via LiDAR was performed to correlate the 
internal damage detected from the non-destructive evaluation technologies and the 
external changes in geometry on the top surface of the bridge deck. Table 3 summarizes 
the results gathered from the test performed, including half-cell potential (HCP), ground 
penetrating radar (GPR), electrical resistivity (ER), ultrasonic wave (USW), impact echo 
(IE), and point cloud captured via LiDAR.

(1)PC Vs. VI =
Point Cloud Percent of Damage

Visual Inspection Percent of Damage
× 100

Table 2  Summary of visual inspection Vs. Point cloud data analysis

Inspection method Deck area or points Damaged area or points Percent of damage

Visual Inspection (VI) 112.23 m2 3,25 m2 2.89%

Point Cloud (PC) 36,085,551 points 1,022,188 points 2.83% (97.92% of 
visual inspection)
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Table 3 indicates that the point cloud data was the only NDE capable of detecting an 
anomaly in the geometry of the bridge deck from the first set of scans. GPR data cor-
relates to the point cloud data, indicating a shallow top cover for the reinforcing steel. 
However, this data does not directly indicate a depression at midspan as it could indicate 
an issue with the rebars instead, leaving point cloud data as the only clear evidence of the 
localized anomaly of the surface of the bridge deck. The NDE data collected on Febru-
ary 24th, 2021, and July 21st, 2021, clearly evidenced deterioration in the bridge deck, 
which originated around midspan, as predicted, given the depression of the bridge deck 
detected by point cloud data analysis.

6 � Evaluation of operating bridges in new Jersey
Based on the information gained from studying the NDE and point cloud data captured 
from the full-scale bridge deck specimen, this section presents the evaluation of 13 oper-
ating bridges in New Jersey, USA, incorporating the results found from the testbed eval-
uation. Figure 9 shows a map of New Jersey with the location of the evaluated bridge 
decks. A terrestrial LiDAR was deployed during a regular operating environment, allow-
ing the point cloud data to capture the undisturbed condition of the decks. Once the 
point cloud data of each bridge deck was registered, the same analysis procedures, CESA 
and LSPF, were taken to analyze each structure. Table 4 summarizes the information col-
lected from such analysis, and Fig. 10 presents a graph relating the deck’s condition rat-
ing to the percent of damage found via LSPF analysis.

Table 3  NDE and point cloud data collected from the BEAST specimen
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The trend found in Fig. 10 evidences a correlation between the deck’s condition rating 
and the level of damage found on the top surface. This graph includes the thirteen bridge 
decks from NJ and the testbed from the BEAST Laboratory.

Fig. 9  Bridge decks evaluated in the state of New Jersey
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7 � Conclusions
Based on the analysis of the NDE and LiDAR data, it was found that the condition rat-
ing of bridge decks can be correlated with the percentage of damaged surface area. This 
correlation was established by comparing the results obtained from scanning operating 
bridges in New Jersey with the test bridge. By establishing this correlation, it was possi-
ble to develop a deterioration trend that can be used to prioritize bridge inspections and 
maintenance efforts.

The findings of this research have significant implications for bridge maintenance 
and repair operations. By utilizing LiDAR technology, particularly the methods devel-
oped and implemented in the research: the Curvature Extraction and Slope Analysis 

Table 4  Damage percentage analysis through least square plane fitting results

Bridge # Deck condition Deck points Damaged points Percentage 
of damage

1816155 3 521055 26396 5.07%

0954163 4 9676590 370815 3.83%

0416151 4 10948500 430004 3.93%

0411163 5 10566997 287096 2.72%

Testbed 5 36085551 1022188 2.83%

1816154 6 2730714 68766 2.52%

0805F03 6 1.05E + 08 2731256 2.60%

361632N 8 97715013 1277123 1.31%

0411164 8 11543083 230851 2.00%

1317154 7 50058036 1099241 2.20%

0807P01 7 23976488 581585 2.43%

0833150 7 12119792 285037 2.35%

0821155 9 3340916 36018 1.08%

18G0701 9 1614190 18774 1.16%

Fig. 10  Condition rating vs. Percent of Damaged
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(CESA) method; and the Least Square Plane Fitting (LSPF) method, as part of the 
suite of a non-destructive evaluation techniques, it is possible to accurately assess the 
health of bridge decks and predict their future deterioration rates. This information 
can be used to develop strategies to extend the service life of bridges, prioritize repair 
and maintenance efforts, and effectively manage limited resources.

This research has demonstrated the effectiveness of LiDAR scanning for evalu-
ating the condition of operating bridges in New Jersey and establishing a correla-
tion between deck condition rating and the percentage of damaged surface area. The 
results obtained from this study provide valuable insights into the deterioration trend 
of bridge decks and highlight the potential of LiDAR technology as a reliable tool for 
bridge assessment and maintenance planning. Further research and scanning of more 
bridges can enhance the accuracy and reliability of the established deterioration trend, 
contributing to the development of robust strategies for preserving the structural 
health of bridge decks and ensuring the safety and longevity of bridge infrastructure.

LiDAR proved its efficiency as a geometry-capturing tool for bridges’ decks. The future goal 
through further studies and analysis is to deploy Terrestrial Lidar Scanning TLS as a screening 
tool to be included in the suite of NDE techniques to address early bridge deck deterioration 
and perform a cost analysis that can provide tangible results on budget management.
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