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Abstract 

In the civil structural health monitoring fields, monitored data suffer from noise 
and sensor faults. In practice, redundant sensors are usually deployed to monitor struc-
tural condition to obtain more accurate and robust information. This paper proposes 
a beamforming-based spatial filtering method to improve the data quality by using 
the information redundancy within sensor networks. Data pre-processing is first 
implemented, including missing data imputation and thermal response separation. 
Subsequently, short-term Fourier transform is used to transform the measured time 
sequences into time–frequency domain to obtain more useful features. Finally, signals 
in the time and frequency domain are processed using the beamforming algorithm. 
In the beamformers, a linear filter is applied to suppress noise signals, which is formu-
lated as a constrained optimization problem. Herein, interior point algorithm is used 
to optimize the allocation of the linear filter, wherein the objective function is to mini-
mize the power of the noise component at the beamformer output. The effective-
ness of the proposed method is verified by using signals from strain gauges installed 
on steel deck plates of the  3rd Nanjing Yangtze River Bridge. Results through the case 
study show that signals after spatial filtering have a satisfactory de-noising, which 
indicates the effectiveness of the proposed beamforming algorithm. We believe 
that the proposed beamforming algorithm has substantial potential applications, such 
as providing high quality data source for further investigations.

Keywords: Structural health monitoring, Beamforming, Spatial filtering, De-noising, 
Robust signal

1 Introduction
To ensure the operational and structural safety of bridge structures, structural health 
monitoring (SHM) systems are often deployed to monitor environmental factors, external 
loads, structural response and structural variations (Ko and Ni 2005; Ou and Li 2010; Xu 
and Xia 2011; Fujino and Siringoringo 2008; Xu et al. 2019). Based on available SHM data, 
extensive data-driven methods were proposed to evaluate bridge condition, detect struc-
tural damages/anomalies, and estimate extreme loads (Sun et al. 2020; An et al. 2019; Hou 
and Xia 2021; Avci et al. 2021; Ren et al. 2022). However, SHM data-driven methods suf-
fer from signal noise that plays a significant impact on effectiveness of data-driven algo-
rithms. In this regard, research regarding de-noising for SHM data is highly desired.
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Over the last decades, various basic de-noising methods have been introduced to 
structure engineering to deal with measurements from SHM systems, including low-
pass filter (Roberts and Roberts 1978), median filter (George et al. 2018; Yang et al. 1995; 
Pitas and Venetsanopoulos 2013), adaptive filter (McGillem et  al. 1981; Huang et  al. 
2015), wavelet transform (Staszewski et  al. 2000), and empirical mode decomposition 
(EMD) (Boudraa et al. 2004), etc. Different de-noising algorithms have their own condi-
tions of applicability. Low-pass filters are particularly suitable for high-frequency noise 
attenuated with the side effect of distorting the original signal (Gupta and Gupta 2013; 
Dolabdjian et al. 2002). Since the low-pass filter, a linear filtering method, does not han-
dle nonlinear noise or complex noise types well, median filters are introduced to handle 
scenarios where the data is contaminated with impulse noise (salt-and-pepper noise) or 
random spikes (George et al. 2018; Tsurkan et al. 2022). In contrast to linear filters, the 
median filter is less capable of smoothing the data. Moreover, the performance of the 
median filter can be sensitive to the size of the filtering window (Hamza et  al. 1999). 
Adaptive filters are able to adjust its filter coefficients or parameters in a real-time man-
ner based on the characteristics of the input data, which makes it effectively track and 
reduce noise even in non-stationary or time-varying noise environments (Dixit and 
Nagaria 2017). Nonetheless, adaptive filters might overfit to the noise or variations 
within the data, leading to potential signal distortion or loss of important signal features 
(Lee and Lee 2005). The wavelet transform has a great effect on processing non-sta-
tionary signals and preserving the peak and break section of the useful signal, while the 
effectiveness of de-noising depends on the choice of initial wavelet function (Garvanov 
et al. 2019; Zhao 2017; Yan 2019; Wang et al. 2007; Hongmei and Feng 2010). EMD is 
commonly used for processing signals with time-varying characteristics (Messina et al. 
2009). Since the essence of EMD is to decompose the signal into Intrinsic Mode Func-
tions (IMFs) (Huang et al. 2009), it may suffer from mode mixing, where certain IMFs 
contain mixed information from multiple underlying modes (Han et al. 2017), leading to 
reduced de-noising performance.

Based on the above de-noising algorithms, scholars have improved them by com-
bination with practical application scenarios. A wavelet-based multilevel filtering 
approach was implemented in the field of nondestructive testing by taking advantages 
of the median filtering (Zhang and Wei 2019). Ensemble empirical mode decomposi-
tion (EEMD) was applied in reducing the noise of bridge GNSS data, which has good 
adaptive ability. However, some effective signals will be rejected in the process of noise 
reduction (Cao et  al. 2021). Complete ensemble empirical mode decomposition with 
adaptive noise-wavelet transformation (CEEMDAN-WT) method can not only effec-
tively solve the problem of modal aliasing, but also extract bridge real displacement 
information (Xiong et al. 2021). EMD and mirror image closed extension method were 
combined to solve the endpoint effect when obtaining the real deformation of the track 
structure caused by under-crossing railway project (Pan and Liu 2022). In addition, deep 
learning algorithms (e.g., deep bidirectional gated recurrent unit recurrent neural net-
work model) have also been applied in the field of signal noise reduction (Li et al. 2022). 
However, majority of the data-targeted noise reduction methods are on the foundation 
of a single sensor or signal source, which do not fully utilize the spatial information of 
multiple sensors, i.e., signal noise reduction is carried out on a two-dimensional level.
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In distance speech recognition, beamforming is a classical algorithm to process speech 
signals from multi-microphones, enhancing the speech of interest with attenuating 
noise signals by utilizing spatial information (Cho et al. 2019; Liu et al. 2019a). The basic 
concept of beamforming is to use measured background spatial correlation characteris-
tics to suppress noise and interference, thereby enhancing the beam output and signal-
to-noise ratio (SNR) (Cox et al. 1987). In civil SHM systems, information obtained from 
sensor networks is always of redundancy. Specifically, neighbor sensors capture similar 
structural response owing to their adjacent locations, which in fact are spatially corre-
lated. Aiming to obtain cleaner data for SHM data-driven analysis, beamforming algo-
rithms are introduced to suppress noise in SHM systems.

This paper develops a beamforming algorithm to obtain robust signals for further 
data-driven analysis. The monitoring signals are first pre-processed by using miss-
ing data imputation and thermal response separation. Then, short-term Fourier trans-
form (STFT) is used to transform time sequences in time domain into time–frequency 
domain. Subsequently, signals of neighboring sensors are used to compound robust 
inputs for neural networks using beamforming algorithms. The effectiveness of the 
beamforming algorithm is illustrated by using measurements of strain gauges installed 
on steel deck plates.

1.1  Signal processing for SHM

The procedure of signal processing, from measured raw signals to robust signals as 
inputs of data-driven analysis, is shown in Fig. 1. Data pre-processing is a common step 
to prepare data for further investigations in the civil SHM research filed. Herein, the data 
pre-processing includes missing data imputation and thermal response separation. In 
view of the robustness of algorithms, the measured time sequences are transformed into 
time–frequency domain using STFT. Beamforming algorithms are employed to obtain 
robust signals based on measurements from multiple neighboring sensors.

1.2  Data pre‑processing

Data missing is a common phenomenon in SHM systems owing to power deple-
tion, hardware failure, harsh environment attack, etc. Missing data may result in 
information loss in time and frequency domains of the measured time sequences; 
in addition, missing data may cause a breakdown of certain data processing algo-
rithms. Methods of missing data imputation are widely studied in the field of SHM. 
In the presence of a large block of missing data, measurements from other sensors 
are employed for reconstruction based on the spatial correlations among sensors in 
the network. The typical approaches include Bayesian learning methodology (Wan 
and Ni 2019), kernel regression model (Chen et al. 2019), artificial neural networks 
(Martinez-Luengo et al. 2019), etc.

The temperature action is one of the dominant loadings in civil structures. However, 
thermal effects are not the response of interest for structural condition assessment or 
anomaly detection. What is worse, it is quite possible that the wiggling in response of 
interest is covered by that induced by temperature actions. A significant number of 
investigations have been carried out in terms of thermal response separation meth-
ods, including regression methods (Kromanis and Kripakaran 2014), FE model-based 
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methods (George et  al. 2018; Tsurkan et  al. 2022), and data-driven methods (Hamza 
et al. 1999; Dixit and Nagaria 2017; Lee and Lee 2005).

1.3  STFT

The STFT is a Fourier-related transform used to determine the sinusoidal frequency 
and phase content of local parts of signal as it changes over time. The STFT is devised 
for analyzing a signal in both time and frequency domain, which is broadly adopted in 
speech recognition (Hinton et al. 2012; Abdel-Hamid et al. 2014). In the STFT, the Fou-
rier transform of the resulting signal is taken as the window sliding along the time line, 
resulting in a two-dimensional representation of the signal (Allen 1977). Specifically, to 
understand the frequency content of the signal at a certain time (t), one should focus 
on a small portion of the signal at that time and ignore the remaining signal, perform-
ing Fourier transform and obtaining a spectrum at that epoch. Subsequently, one takes 
another small piece of equal length signal at the next instant and get another spectrum. 
Repeat the above process until the entire signal is sampled. The collection of all these 
spectrums provide a time–frequency spectrogram that covers the entire signal and cap-
tures the localized time-varying frequency content of the signal. Mathematically, we 
have

Fig. 1 Flowchart of signal processing in SHM systems
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Where X
(

f , t
)

 is the short term frequency spectrum, t is the time variable, w(t − τ) is 
the shifted window, x(τ ) is the input signal, and ej2π f τ is the complex exponential.

The energy density of the signal and the spectrogram is given by Nagarajaiah (2009)

1.4  Beamforming algorithms

1.4.1  Descriptions of beamforming issue in civil SHM

Beamforming, also known as spatial filtering, is a signal processing technique used 
in sensor arrays for directional signal transmission or reception, which is one of the 
most effective approaches for robust recognition of distant speech using multi-micro-
phones. In remote speech recognition, microphone signals obtained from different 
locations make the beamformer augment the target speech with attenuating noise 
signals. In beamforming techniques, the minimum-variance distortionless response 
(MVDR) beamformer is popular since its efficiency in enhancing the target speech by 
minimizing the power of the beamformed noise signal. Whereas, to obtain an output 
signal with a high SNR using the MVDR beamformer, it is necessary to accurately 
estimate the spatial statistics of the noise, i.e., noise covariance matrix (Cho et  al. 
2019).

Considering the harsh operational environments and degradations of sensors, beam-
forming algorithms are introduced to civil SHM systems to obtain robust signals for fur-
ther data analytics. The application of the beamforming algorithm in civil SHM systems 
must comply with specific requirements. It is essential that the multi-sensors involved 
are adjacent and of the same type. As discussed earlier, the signals in the time–frequency 
domain processed by using STFT can be formed as

Where xk ,l denotes the vector x0k ,l , x1k ,l , . . . , xM−1
k ,l  , where the m-th element is the 

m-th sensor observation at the k-th frequency bin and l-th frame. Similarly, Sk ,l denotes 
the signal vector of interest, and nk ,l is the zero-mean noise component.

Generally, a linear filter ωk is applied to the measurements from the sensor array to 
obtain an enhanced signal, namely

where H denotes the Hermitian operation on the vector. The applications of a linear fil-
ter in the beamforming are shown in Fig. 2.

Based on the idea of beamforming, a general beamforming architecture is devised as 
shown in Fig. 3 for measurements of civil structures, where M denotes the number of 
sensors, K is the number of frequency bins, xmk is a vector subject to the k-th frequency 
bin of the m-th sensor, i.e., xmk = (xmk,0, xmk,1, …, xmk,L-1), and L is the number of frames.
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The minimum-variance response beamformer suppresses noise signals by minimiz-
ing the power of a noise component at the beamformer output, which is the optimized 
objective. In fact, the minimum-variance response beamformer could be formulated 
into a constrained optimization problem, i.e.,

where Rn
k is the noise covariance matrix, which is expressed as

Equation (5) and (6) illustrate the optimized rules for the beamforming process.

(5)
ωk = argminωkω

H
k R

n
kωk ,

s.t.
∑M−1

m=0 ω
m
k = 1

ωm
k − 1 ≤ 0, (0 ≤ m ≤ M − 1)

(6)R
n
k = E

[

nkn
H
k

]

Fig. 2 Linear filter-based beamforming algorithms

Fig. 3 Architecture of beamforming algorithms
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1.4.2  Constrained optimization using interior point algorithm

As shown in Eq.  (5), the beamforming issue in civil SHM is formulated into a con-
strained optimization problem. The interior point method is a type of algorithm used 
in solving both linear and nonlinear convex optimization problems (Wächter and Bie-
gler 2006; Liu et al. 2019b).

1.4.3  The general constrained optimization problem is expressed as

In this article, f (x) denotes ωH
k R

n
kωk , h(x) equals to 

M−1
∑

m=0

|ωm
k | − 1 , and g(x) is 

|ωm
k | − 1 . In order to get rid of the inequality constraints, for each barrier parameter 

µ > 0 , the approximate problem is given as

Where si is the slack variables associated with the number of inequality constraints g(x). 
si is restricted to be positive to keep ln(si) bounded. As µ decreases to zero, the mini-
mum of fµ should approach the minimum of f. The added logarithmic term is called a 
barrier function.

The approximate problem, Eq. (8), is a sequence of equality constrained problems, 
which are easier to solve than the original inequality-constrained problem. Subse-
quently, the equality constraints are incorporated into the objective function using 
Lagrange multipliers, namely

where �h and �g are the Lagrange multipliers. An approximate solution 
(

x̂, ŝ
)

 is imple-
mented instead of the accurate solution of Eq. (8), where 

(

x̂, ŝ
)

 satisfies the condition

here e is the vector of all ones with appreciate dimension, S = diag(s0, s1,…, sM-1), ∇h(x) 
and ∇g(x) are the Jacobian of the constraint vectors h(x) and g(x), and εµ is the tolerance, 
which determines the accuracy in the solution of the barrier problems.

After computing Lagrange multiplier estimates 
(
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)

 , we formulate the 
subproblem.
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In which ∑ k is the Hessian of the Lagrange Eq. (9) with respect to s. Ideally, we would 
like our step to make r =

(

rh, rg
)

= 0.
Equivalently, Eq.  (9) can be interpreted as applying a homotopy method for the pri-

mal–dual system, we obtain

Given a primal–dual iterate 
(

x(k), s(k), �h
(k), �g

(k)
)

 that fulfills the positivity con-

straints, the Karush–Kuhn–Tucker system is solved as

where ∇2
xxLk denotes the Hessian of the Eq. (9) with respect to x, which is expresses as 

∇2
xxLk = ∇2f (x)+ ∇2h(x)T�h + ∇2g(x)T�g , and ∇2

ssLk is the Hessian of the Eq. (9) with 
respect to s.

Choose an initial value for the barrier parameter µ > 0 , and select the parameters 
εµ > 0 , θ ∈ (0, 1) , and the final stop tolerance εTOL . Choose the starting point x and s, 
and evaluate the objective function, constraints, and their derivatives at x.
Repeat until E(x, s;µ) � εTOL:

1. Start from (x, s) to find an approximate solution (x+, s+) of the barrier problem Eq. (8) 
satisfying E(xk , sk;µ) � εµ , i.e.,

Repeat until E(xk , sk;µ) � εµ:
Compute △= (△ x,△ s) by approximately solving Eq. (11).
If the step △ provides sufficient decrease.
then set xk+1 = xk+ △ x, sk+1 = sk+ △ s,
compute new Lagrange multiplier estimates �h and �g,
and possibly enlarge the trust region;
else set xk+1 = xk , sk+1 = sk , and shrink the trust region.
Set k=k+1.

2. Set µ ← θµ, εµ ← θεµ, x ← x+, s ← s+.

2  Case study
2.1  The  3rd Nanjing Yangtze river bridge and its monitoring system

The  3rd Nanjing Yangtze River Bridge is a vital transportation link crossing the mid-
dle and lower Yangtze River and connecting Nanjing City and its Liuhe District. It is a 
two-tower cable-stayed bridge with a main span of 648 m as shown in Fig. 4. The super-
structure deck has a depth of 3.2 m and the orthotropic steel box girder has a width of 
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37.5 m to accommodate three traffic lanes in each direction. The deck is supported by a 
total of 168 stay cables and each cable consists of 109 to 241 wires having a diameter of 
7 mm.

Measurements of the strain gauges (D1, D2 and D3) at the mid-span section are used 
to validate the effectiveness of the proposed beamforming algorithm. The deployment of 
the sensor gauges is shown in Fig. 5, where the sampling frequency of the strain gauge is 
10 Hz. The measurements of the selected three sensors all reflect the characteristics of 
vehicle loadings on the half of the driveway (downstream) and the response of the steel 
deck.

2.2  Data pre‑processing

Data obtained from the three strain gauges (D1, D2 and D3) in one hour (9:00 
a.m. ~ 10:00 a.m., Mar. 1, 2007) are used to illustrate the proposed approach. The miss-
ing data solution is to propagate the last valid observation forward to the next one. 
The measurements of the three sensors are shown in Fig. 6 after completion of missing 
data imputation. Significant trends are observed as the red arrows in Fig. 6, which are 
induced by thermal actions.

Wavelet-based multi-resolution analysis is used to separate thermal response. Based 
on trials and errors, the stress signals are decomposed into 8 layers with the wavelet 
basis function ‘db12’. The low frequency components corresponding to the temperature-
induced variations are separated from the original signals. The qualified signals after 
thermal response separation are shown in Fig. 7. The variation trends of the measure-
ments from the three sensors are highly correlated as shown in Fig. 7(d), which shows 
that the effect of thermal response separation is significant.

Fig. 4 Layout of the  3rd Nanjing Yangtze River Bridge

Fig. 5 Deployment of the stain gauges at the mid-span section
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2.3  STFT

STFT is applied to the qualified signals shown in Fig. 7 to obtain information in both 
time and frequency domain. With the Hamming window of length 128, 50% over-
lap between segments, the FFT length of 128, and the sampling frequency of 10 Hz, 
the spectrograms of the qualified signals from the three strain gauges are shown in 

Fig. 6 Measurements obtained from the three strain gauges

Fig. 7 Signals after thermal response separation
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Fig.  8. As a result, most of the signal energy focuses on the frequency bandwidth 
between 0 Hz and 0.40 Hz.

2.4  Beamforming process

According to the beamforming algorithms, noise signals are necessary to determine 
the linear filter corresponding to sensors. Herein, measurements obtained from the 
sensor during bridge closure time windows are treated as noise signals. The meas-
urements of the three sensors (D1, D2 and D3) between 07:00 a.m. and 08:00 a.m. 
on Mar. 25, 2007 (bridge closure time window) are shown in Fig.  9, which are pre-
processed by missing data imputation.

Wavelet-based multi-resolution method is used to separate thermal response from 
the noise signal, and STFT is then used to obtain the spectrum as shown in Fig. 10. 
The noise signals are of stationary type, which means that the statistics of the noise 
(e.g., spectrum shape) remain constant with respect to the time line. The energy of 
the noise signals mainly lies in two frequency bandwidths, i.e., [0.2 Hz, 1.3 Hz] and 
[1.9 Hz, 2.7 Hz].

Since the beamforming process not only suppresses noise but also the signals of inter-
est, signals subject to noise frequency bandwidths are processed by using the beamform-
ing algorithm. Considering the overlap of frequency bandwidths between the obtained 

Fig. 8 STFT spectrum of the three strain gauges

Fig. 9 Noise signals obtained from the three sensors
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measurements and noise, frequency bandwidths of [0.4 Hz,1.3 Hz] and [1.9 Hz, 2.7 Hz] 
are used for beamforming discussions.

Interior point algorithm is adopted to determine the linear filter to minimize the variance 
response as shown in Eq.  (5). Noise signals corresponding to frequency bin of 0.391 Hz 
are taken as an example to demonstrate the optimization process. The variables involved 
in the optimization procedure include real parts of the three weights (i.e., X(1), X(2) and 
X(3)) and image parts of the three weights (i.e., X(4), X(5) and X(6)). The optimization pro-
cess is shown in Fig. 11, where the current point is the present optimum solutions, func-
tion count reports the number of times that the objective function was evaluated, function 
value indicates the value of the objective function, constraint violation is the maximum 
constraint violation value of each iteration, step size is the algorithm step size at each itera-
tion, and first-order optimality is the violation of the optimality conditions for the solver at 
each iteration. According to the optimization results, the constraint conditions are strictly 
obeyed, and the optimum linear filters of the three sensors are (0.1361 + 0.2856i), (0.3160–
0.0726i) and (-0.0193 + 0.3589i), respectively. Similarly, linear filters of the other frequency 
bins could be obtained through the same optimization process.

Fig. 10 STFT spectrum of the noise signal from the three sensors

Fig. 11 Parameters in the optimization process
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3  Results and discussions
Following the above optimization process, the optimum linear filters subject to the three 
sensors are listed in Table 1.

Applying the optimum linear filter to the noise signal, the noise is substantially sup-
pressed, especially in the frequency bandwidth [1.9 Hz,2.7 Hz] as shown in Fig. 12(a). 

Table 1 Optimum linear filter corresponding to the three sensors

Frequency 
bin (Hz)

Real part 
of ω1

Real part 
of ω2

Real part 
of ω3

Image part 
of ω1

Image part 
of ω2

Image part 
of ω3

[0.4 Hz,1.3 Hz]

 0.391 0.1361 0.3160 -0.0193 0.2856 -0.0726 0.3589

 0.469 0.1407 0.3147 0.0639 0.2968 0.0078 0.3508

 0.547 -0.3145 0.0969 0.0653 -0.0340 -0.2906 0.3714

 0.625 -0.1184 -0.2336 0.2568 0.2785 0.2178 -0.2772

 0.703 0.2805 0.1052 -0.2511 -0.1699 0.2966 0.2540

 0.781 0.3011 0.1748 -0.1877 -0.1192 0.3002 0.2697

 0.859 0.1976 -0.0109 0.3364 0.2501 0.3214 0.1269

 0.937 0.2899 0.2488 -0.3092 -0.1377 0.2259 0.1481

 1.016 0.2638 0.1549 -0.2486 -0.2040 0.2933 0.2239

 1.094 -0.2686 0.2578 -0.0134 0.1479 -0.2275 0.3490

 1.172 0.2992 -0.3216 0.3231 -0.0670 -0.0296 0.1810

 1.250 0.2867 -0.0237 0.1295 -0.1543 0.2979 0.3523

[1.9 Hz,2.7 Hz]

 1.953 0.1224 0.0529 0.3366 0.2846 0.3483 0.0272

 2.031 0.3252 0.2053 -0.2667 0.0105 0.2534 0.2242

 2.109 0.2460 0.0923 -0.1447 -0.1998 0.3010 0.3385

 2.187 0.0302 -0.1618 0.2897 -0.2927 0.3010 0.3385

 2.265 -0.0390 0.0909 0.1469 0.2797 0.3527 -0.3212

 2.344 0.1833 0.0557 -0.0028 0.2569 0.3384 -0.3413

 2.422 0.0104 0.1366 0.3581 0.3488 0.2520 0.0663

 2.500 -0.1206 0.0794 0.4035 0.3355 0.2262 0.0092

 2.578 0.1558 -0.0386 0.3535 0.2966 0.2951 0.0990

 2.656 -0.1322 0.1337 0.3405 0.3073 0.2758 -0.1130

Fig. 12 Spatial filtering results of the noise and studied signal
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Aiming to validate the effectiveness of the proposed spatial filtering method, the linear 
filter is used to reduce the noise in the studied signals as shown in Fig. 8. As a result, the 
power spectral density corresponding to the noise frequency bandwidths is significantly 
reduced compared with the signals obtained from the single sensor. The specific beam-
former output is shown in Fig. 12(b). SNR is introduced to quantitatively rate the effi-
ciency of the proposed spatial filtering. The SNRs of the measurements obtained from 
the three strain gauges are 33.5 dB, 32.6 dB and 31.9 dB, respectively. After the beam-
forming process, the SNR increases to 35.3 dB. The SNR is not significantly improved 
since the spatial filtering not only suppress the noise but also the signal of interest.

4  Conclusions and prospects
This paper explores to introduce the beamforming algorithm into data processing in 
civil SHM fields to achieve robust signals for further investigations. The following 
conclusions can be drawn from this study:

(1) In view of the deployment of sensors in civil structures, information redundancy of 
measurements from various sensors is common in civil SHM fields. The spatial corre-
lations between signals from different sensors provide foundations for spatial filtering.

(2) Following the concept of the beamforming algorithm in distance speech recogni-
tion, the beamforming algorithm in civil SHM fields is summarized into a con-
strained optimization problem. The interior point algorithm is adopted to address 
the optimization problem.

Measurements of strain gauges from the  3rd Nanjing Yangtze River Bridge during nor-
mal service time windows and closure time windows are used to verify the effectiveness 
of the proposed beamforming algorithm. As a result, the SNRs of the measurements 
obtained from the three strain gauges are 33.5  dB, 32.6  dB and 31.9  dB, respectively. 
After the beamforming process, the SNR increases to 35.3  dB, which has an average 
increase of 8.3%. Obviously, with the applications of the linear filter, the noise in the 
beamformer outputs is significantly suppressed when compared with the signal from the 
single sensor. In conclusion, the robustness of signals is improved by use of the beam-
forming algorithm, which provides high quality data source for further studies.

The present study mainly focuses on the de-noising aspect by use of spatial filtering. 
However, sensor faults are common in practical engineering owing to the manufacturing 
flaws, harsh operation environment and performance degradation. Future study can be 
conducted regarding obtaining robust signals with the interference of sensor faults.
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