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1  Introduction
The identification and detection of structural surface damages, especially cracks, can 
provide reliable data support for the operation and maintenance of the structure (Zhao 
et  al. 2022, 2021). The traditional crack detection adopts manual detection, and the 
detection results are often subjective. Furthermore, the traditional detection method is 
often lack of universal standard, which leads to low accuracy. With the development of 
computer vision technology (Zakaria et al. 2022), the crack detection algorithm based 
on computer vision has the advantages of automation, high efficiency and no contact 
(Xu & Liu 2022a) to better solve the problems existing in the manual detection method 
(Spencer et al. 2019). Especially with the rapid development of deep learning technol-
ogy in recent years, Convolutional Neural Network (CNN) model greatly improves the 
accuracy and efficiency of detection (Liu & Xu 2022; Xu & Liu 2022b). At present, the 
detection algorithm based on CNN model has been used to detect the surface damages 
of buildings (Guo et al. 2020), bridges (Deng et al. 2020) and tunnels (Stent et al. 2016).
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The functions of CNN models are mainly distributed into three types: image clas-
sification (Krizhevsky et al. 2017), object detection (Girshick et al. 2014) and semantic 
segmentation (Long et  al. 2015). The image classification model can judge the cat-
egory of the input image, the object detection model can roughly judge the position of 
objects in the image, and the semantic segmentation model can detect the objects in 
the image pixel by pixel. In terms of accuracy, the semantic segmentation model is the 
most accurate, but it needs pixel-level labeled data as the training set, which requires 
a lot of manual work and has become an important factor restricting the application 
of CNN models in structural crack detection.

To address the difficulty in obtaining high-quality labeled datasets, weakly-super-
vised semantic segmentation algorithm (M. Zhang et  al. 2020) has been proposed. 
Weakly-supervised semantic segmentation is a popular research direction in the 
field of computer vision, aimed at automatically identifying and segmenting different 
semantic regions. Unlike traditional supervised learning methods, weakly-supervised 
semantic segmentation uses less labeled information, which may only be image-level 
labeling, or even just textual descriptions.

Class Activation Map (CAM) technique (Long et  al. 2015) is an interpretabil-
ity method commonly used in image classification tasks, which has been applied to 
weakly-supervised semantic segmentation in recent years. The CAM technique gen-
erates activation maps for each class by weighting the feature maps after global aver-
age pooling, visualizing the regions of interest that the network focuses on for each 
class. In weakly-supervised semantic segmentation, the CAM technique can be used 
to generate pixel-level class activation maps, guiding the network to learn the seman-
tic segmentation task (Huang et al. 2018; Kolesnikov & Lampert 2016). The applica-
tion of CAM technique in weakly-supervised semantic segmentation can improve 
the segmentation performance of the network, while providing interpretable results 
that help understand the decision-making process of the network in the semantic 
segmentation task. However, applying CAM to existing weakly-supervised semantic 
segmentation models requires generating small seed regions that do not exceed the 
boundaries of the objects to be segmented. Considering the nature of cracks, which 
are typically thin and elongated, this can be challenging. Therefore, conventional 
weakly-supervised semantic segmentation algorithms may not perform well in crack 
detection tasks.

Superpixel segmentation algorithm is a type of image segmentation method that 
divides an image into several regions, each of which is called a superpixel. Superpixel 
refers to a group of pixels that are semantically close to each other in the image and are 
merged into one category, thus dividing the image into small blocks with certain seman-
tic information.

Compared with traditional pixel-level segmentation methods, superpixel segmenta-
tion algorithm has the following advantages. First, superpixel segmentation algorithm 
divides the image into several superpixels, which reduces the number of pixels, thereby 
reducing the computational complexity and improving segmentation speed. Second, 
superpixel segmentation algorithm merges similar pixels in the image into one category, 
thereby reducing noise and unnecessary details and improving segmentation accuracy. 
Finally, superpixel segmentation algorithm does not require any prior information or 
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annotated data, only preprocessing of the image is needed, thereby reducing the diffi-
culty and implementation cost of the algorithm.

Therefore, this paper proposes a weakly-supervised crack identification algorithm that 
combines CAM and superpixel methods. The algorithm consists of three main steps. 
Firstly, a binary classification model based on the structure of the Vgg16 model is con-
structed to determine whether there are cracks in the image. The model is trained using 
transfer learning. Secondly, an improved method of Grad-CAM +  + is proposed, which 
accurately reflects the rough location and distribution of cracks in the image. Finally, the 
SLIC algorithm is used to obtain the superpixel segmentation results of the crack image, 
and CAM is used to determine the category of the superpixel to obtain the semantic 
segmentation results of the cracks in the image. Additionally, Bayesian optimization is 
employed to optimize the two most critical parameters of the algorithm to obtain the 
optimal model. The experimental results show that the proposed method achieves 
high-precision weakly-supervised semantic segmentation of pixel-level recognition 
results using only image-level labeled datasets. Moreover, the use of Bayesian optimiza-
tion significantly reduces the optimization cost of the algorithm, thereby improving its 
efficiency.

The main original contributions of this paper are as follows:

1.	 A new approach is proposed that combines Convolutional Neural Networks (Vgg16-
Crack), an optimized Class Activation Map (CAM) algorithm, and Superpixel Seg-
mentation (SLIC). This blend of techniques allows for accurate semantic segmenta-
tion of cracks, overcoming some limitations of other methods.

2.	 High-precision semantic segmentation is achieved by our method using only image-
level labels, which significantly reduces the labor and material costs associated with 
pixel-level labeling. This makes our approach more feasible for real-world applica-
tions.

3.	 The use of a Bayesian optimization algorithm is introduced to obtain optimal param-
eter combinations, enhancing the performance of the model and reducing optimiza-
tion costs.

Therefore, this paper proposes a detection method based on CAM, which can detect 
the distribution and position of cracks based on the image classification model, taking 
into account both the data labeling cost and detection accuracy, and has great practical 
value. The overall idea of the paper is shown in Fig. 1.

1.1 � Training and testing of CNN model

1.1.1 � Establishment of data set

The data set used in this paper is a public dataset, which containing 56000 concrete 
images (Maguire et al. 2018). The data set can be distributed into two categories: crack 
and no crack. In this paper, 4000 of them are used as training sets and 1000 as test sets.

1.2 � Structure of CNN model

Convolutional neural networks (CNNs) have become a popular method for image 
classification tasks due to their ability to learn hierarchical representations of visual 
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features. One prominent example of a CNN architecture is the Vgg model (Simonyan 
& Zisserman 2014).

The Vgg model is composed of a series of convolutional layers with small 3 × 3 fil-
ters, followed by max-pooling layers to reduce the spatial resolution of the feature 
maps. The use of small filters allows the model to learn more complex features, 
while the max-pooling layers help to reduce the number of parameters and control 
overfitting.

Vgg16 is a CNN model that belongs to the VggNet, it consists of 13 convolutional lay-
ers and 3 fully connected layers, with a filter size of 3 × 3 for the convolutional layers 
and a window size of 2 × 2 for the pooling layers. Vgg16 conducts a training process that 
utilizes extensive data augmentation and dropout techniques to avoid overfitting. The 
model takes input images of size 224 × 224 and outputs a probability distribution over 
1000 possible categories.

The success of Vgg16 demonstrates that constructing CNN models with deeper and 
smaller convolutional filters can lead to better performance and has become a standard 
approach in image classification tasks. Furthermore, Vgg16 has also inspired deep learn-
ing research in other fields such as object detection, segmentation, and generative adver-
sarial networks.

Therefore, the classification model in this paper is based on Vgg16 model. The num-
ber of output categories of the original Vgg16 model is 1000, while the crack detection 
model in this paper only needs to judge whether there is crack in the image. Therefore, 
the last two layers of the original Vgg16 model are changed to two outputs, as shown in 
Fig. 2. The above model is defined as Vgg16-Crack model.

The Vgg16-Crack model uses the categorical crosstropy loss as the loss function, as 
shown in Eq. (1):

Fig. 1  Overall thinking of the paper
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>where yi refers to each label of the sample, 1 represents the positive class (crack), 0 
represents the negative class (no crack), and pi is the probability that the input image is a 
positive class.

1.3 � Model training

In order to improve the training efficiency, this paper adopts the methods of transfer 
learning (Weiss et al. 2016). Because the training set of the original Vgg16 is the ILS-
VRC-2012 data set containing more than 1 million images, the convolutional layers of 
original Vgg16 have strong feature extraction ability. Before training, take the param-
eters of the original Vgg16 model as the initialization value, and freeze the parameters 
of the convolution layer. Only the parameters of the full connection layer are trained 
during training.

Hyperparameters are the parameters set before training. The hyperparameters to be 
set in this paper include: epoch of training: Epoch, size of each batch: minibatchsize 
(MBS), and learning rate: LR. Because this paper adopts the transfer learning method 
for training, and the parameters of Vgg16-Crack only need to be fine-tuned, the smaller 
epoch and LR are adopted. Considering the limitation of video memory of the GPU, the 
value of MBS is relatively moderate. The setting of hyperparameters is shown in Table 1.

The training process of Vgg16-Crack is based on Tensorflow framework in Python 3.6., 
and the model is completed on a computer equipped with Intel i7-10700  k CPU and 
NVIDIA GEFORCE RTX3070ti.

There are 4000 images in the training set, and MBS = 32, epoch = 4, so the itera-
tion number of training is 4000 / 32 × 4 = 500. In order to validate the generalization 

(1)Loss =
1

N i
− yi · log(pi)+ 1− yi · log(1− pi)

Fig. 2  Structure of Vgg16-Crack model

Table 1  Setting of hyperparameters

Hyperparameter Value

Epoch 4

MBS 32

LR 0.0001
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ability of CNN model, during the training process, the images in the test set are input 
into the training Vgg16-Crack model and calculate the accuracy and loss, as shown in 
Fig. 3.

It can be seen from Fig. 3 that the accuracy of the model reaches to nearly 100% in 
both the training set and the test set. At the same time, the losses of the two data sets 
decrease rapidly with the progress of training and finally tend to be stable. It is worth 
noting that the loss of the test set does not rise with the training process, which indicates 
that there is no over fitting in the model.

1.4 � Model testing

From the above analysis, it can be seen that the Vgg16-Crack model has good perfor-
mance in the training set and test set and can accurately distinguish whether there is 
crack in the concrete image, and the model has good generalization ability. In order to 
further test the performance of the model in the test set, this paper will calculate the 
confusion matrix and its related test indicators.

Confusion matrix is a visualization tool in machine learning and deep learning, which 
can be used to compare classification results with real information of examples. Define 
an image with crack as positive, and one without crack as negative. TP represents the 
number of images with cracks accurately recognized, while FN represents those inac-
curately recognized. FP represents the number of images without cracks accurately 
recognized, while TN represents those inaccurately recognized. Table 2 shows various 
situations of concrete crack identification.

The results will be tested by Precision, Recall, F1 and Accuracy. Definitions of these 
four indicators are as Eq. (2) ~ Eq. (5):

Fig. 3  Model training

Table 2  Various situations of pavement crack identification

Identification Positive (Crack) Negative 
(No 
Crack)

Ground truth

Positive (Crack) TP FN

Negative (No Crack) FP TN
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where the meanings of TP, FP, TN, and FN are the same as those in Table 2.
1000 images in the test set are input into the trained Vgg16-Crack model and the con-

fusion matrix is calculated, as shown in Table 3.
According to Table  3, Precision = 0.996, Recall = 1.000, F1 = 0.998 and Accu-

racy = 0.998. The four evaluation indexes are all over 0.99, so Vgg16-Crack model has 
good classification performance.

2 � Crack detection algorithm based on CAM
The image classification model can judge the category of the image (crack or no crack), 
but it can not give the distribution of cracks in the image. In fact, semantic segmentation 
model can provide pixel-level detection, but the semantic segmentation model has very 
high requirements for data labeling, and needs pixel-level labeled data as the training 
set. This paper presents a method based on CAM, which uses the classification model 
Vgg16-Crack to detect the crack distribution in the image.

2.1 � Class activation map

Through multi-layer convolution operation, CNN model gradually extracts the informa-
tion in the image, and finally generates feature maps. Then, the fully connected layers 
further extract the information in the feature map and output the probability that the 
image belongs to each category. Therefore, the feature maps output by the convolution 
layer reflect the features extracted by the model from the input image.

Based on this idea, Selvaraju et  al. (Selvaraju et  al. 2017) proposed Grad-CAM, and 
Chatopadhyay et al. (Chattopadhay et al. 2018) proposed Grad-CAM +  + . This kind of 
algorithm is to calculate the gradient of the output of CNN model to the feature map 
first, then take it as the weight, finally calculate the weighted sum of all the feature maps, 
and convert it into a heat map.

(2)Precision =
TP

TP+ FP

(3)Recall =
TP

TP+ FN

(4)F1 =
2

1/Precision+ 1/Recall

(5)Accuracy =
TP+ TN

TP+ FP+ TN + FN

Table 3  Confusion matrix

Identification Positive Negative
Ground truth

Positive 500 0

Negative 2 498
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The area with higher value in the heat map is the position that contributes more to 
the CNN model. If it has high degree of overlap with the expected detected target area 
(the area of cracks), it indicates that the CNN model is more accurate in image detection 
(Yang et al. 2020). The algorithm process is shown in Fig. 4.

2.2 � Grad‑CAM +  + 

The core of Grad-CAM, Grad-CAM +  + and its derived CAM-based algorithm is the 
calculation of weight. The weight is determined according to the gradient of the output 
to the feature map, but different algorithms have different weight calculation methods. 
This paper is based on the advanced Grad-CAM +  + to detect cracks.

According to algorithm of Grad-CAM +  + , the weight corresponding to each feature 
map is shown in Eq. (6):

Where

and Ak
ij is defined as the (i, j)th pixel in the k-th feature map of the output of the last 

convolutional layer, Sc is the score of the penultimate layer of category c, and the score 
obtained by the output layer of this category Yc = exp(Sc).

(6)wc
k =

∑

i

∑

j
αkc
ij · Relu

(

∂Y c

∂Ak
ij

)

(7)αkc
ij =

(

∂Sc

∂Ak
ij

)2

2

(

∂Sc

∂Ak
ij

)2

+
∑

m

∑

nA
k
mn

(

∂Sc

∂Ak
ij

)3

Fig. 4  Calculation process of CAM
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The value of each pixel of the finally obtained CAM image is shown in Eq. (8):

where wc
k is defined by Eq. (6), and Ac

ij is defined in the same manner as described earlier.
After visualization, Icij  in Eq. (8) is CAM.

2.3 � Improvement and optimization of Grad‑CAM +  + 

In the actual test process, the CAM obtained by the Eq. (6) ~ Eq. (8) can not fully reflect 
the position and distribution of cracks in some cases. Therefore, two data augmentation 
methods (called DA1 and DA2) are used in this paper. The data augmentation method can 
improve the contrast of heat map and reflect the crack area more accurately.

DA1 linearly transforms each pixel in Icij so that the maximum value is 1 and the mini-
mum value is 0, that is the formula shown in Eq. (9):

where Imin represents the minimum value in the image I, and Imax represents the maxi-
mum value in the image I.

DA2 squares the value of each pixel in the normalized I and normalizes it again, that is 
the formula shown in Eq. (10) and Eq. (11):

where Imin represents the minimum value in the image I, and Imax represents the maxi-
mum value in the image I.

The above data augmentation algorithm is also mathematically interpretable. In this 
paper, the basis for determining whether a pixel belongs to the crack area is whether the 
heat value is greater than a certain threshold. The use of the DA1 method helps ensure that 
each element’s value falls within the range of 0 to 1. This normalization of the range allows 
the same threshold to be applicable to crack images under different conditions.

After the CAM has been processed by the DA1 method, the application of the DA2 
method, which squares the heat values, alters the distribution of heat values within the 
CAM. This modification causes the heat values to concentrate around smaller values.

Under the same threshold, the area with heat values greater than the threshold is reduced 
after using data augmentation, as can be seen in Fig. 5.

In addition, the calculation method of Grad-CAM +  + is improved. In the original Grad-
CAM +  + algorithm, the weight of the feature map is calculated by Eq. (1). In this paper, the 
weight calculation method in for Eq. (6) is optimized as Eq. (12):

(8)Icij =
∑

k
wc
k · A

c
ij

(9)I ′cij =
Icij − Imin

Imax − Imin

(10)I ′′cij =
(

I ′cij

)2

(11)I ′′′cij =
I ′′cij − I ′′min

I ′′max − I ′′min

(12)wc
k =

∑

i

∑

j
αkc
ij · Relu

(

Ak
ij

)



Page 10 of 25Liu and Xu ﻿Advances in Bridge Engineering            (2023) 4:27 

where αkc
ij  is defined by Eq. (7), Ak

ij is defined as the (i, j)th pixel in the k-th feature map of 
the output of the last convolutional layer.

Compared with large data sets, crack data set in this paper have few category, and less 
information can be extracted from the image. Therefore, in Vgg16-Crack, a CNN model 
trained based on Vgg16, only a few feature maps are effective, and the values in most fea-
ture maps are all 0 or close to 0. It can be concluded that if the value in the feature map is 
large, this feature map has high weight. Therefore, this paper uses the method in Eq. (12) 
to calculate the weight.

A good performance was achieved by Eq. (12) in the dataset used in this paper. Fur-
thermore, it is believed that the proposed method can be applied to most structural 
cracks, even those found in complex environments. For the original VGG network, mil-
lions of image datasets provided by computer vision researchers around the world were 
used, encompassing high complexity and 1000 categories. In contrast, for the structural 
surface crack detection algorithm concerned in this paper, the information contained in 
the images is relatively simple. The focus is only on the disease of the image, and the tex-
ture and color information of the disease are relatively singular.

Therefore, the feature extraction capability of the detection model based on the 
VGG16 deep learning model adopted in this paper is far greater than the images in the 
dataset. Even if the images may be in a complex environment, the information of the 
structural surface cracks can be effectively and accurately extracted by the convolutional 
layer of the VGG model.

In addition, after using Eq. (12) to obtain CAM, this paper also uses DA1 and DA2 to 
augment the data, so as to more accurately reflect the crack area.

2.4 � Model validation

The algorithms mentioned above are tested with the images in the test set. Figure  6 
shows partial results. As can be seen from Fig. 6, the original Grad-CAM +  + algorithm 
can roughly reflect the crack area in the image, but the accuracy is low. Furthermore, 
there are also some error detection, some areas with high heat value do not coincide 
with the crack area. Through data augmentation, the detection accuracy based on CAM 

Fig. 5  Data distribution before and after data augmentation
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has been improved to a certain extent. But in some cases, the data augmentation algo-
rithms locate the crack area incorrectly, and the area with high heat value is even far 
away from the crack.

The algorithm proposed in this paper can better solve the above problems. After using 
the optimized weight calculation formula and augmenting the data by DA1 and DA2, 
CAM can basically correctly reflect the position and distribution of the crack.

In order to further test the effect of the proposed algorithm in practical application, 
this paper selects a photograph of concrete surface. Firstly, this image is cropped into 
several images with a resolution of 224 × 224, and then Vgg16-Crack is used to classify 
each image, and generate the CAM of each "crack" category image. Finally, these CAMs 
are combined to obtain the detection results of the original picture, as shown in Fig. 7.

As can be seen from Fig. 7, the method proposed in this paper can ensure the effec-
tiveness in practical application, and has great development potential and broad applica-
tion prospects.

It is worth noting that even with the proposed improved method, the regions with high 
CAM heatmaps still exhibit relatively large widths. Therefore, for smaller cracks, pre-
processing steps are required. For a crack detection task based on computer vision, the 
judgement of whether a crack is fine or not is not based on the actual width of the crack, 

Fig. 6  Model testing
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but rather on the ratio of the pixel width of the crack in the image coordinate system to 
the image resolution. Therefore, it is possible to achieve this by cropping the image and 
adjusting its size, as shown in Fig. 8. If the issue of fine cracks is noted during imaging, 
the distance between the structural surface and the camera lens can be adjusted, or the 
camera’s focal length can be changed during shooting to prevent the relative width of the 
crack in the image from being too small. In general, for fine cracks, simple adjustments 
to the image or camera can transform them into cracks of regular width, making them 
suitable for detection using our proposed method.

3 � Superpixel‑based crack segmentation
3.1 � Superpixel segmentation

Superpixel segmentation algorithms (Ibrahim & El-kenawy 2020) have become a popu-
lar method for image processing tasks in computer vision due to their ability to group 
pixels that belong to the same object or region in an image. These algorithms can be 
used in a variety of applications, including object detection, image segmentation, and 
image recognition.

One prominent example of a superpixel segmentation algorithm is the SLIC (Sim-
ple Linear Iterative Clustering) algorithm (Achanta et  al. 2012). The SLIC algorithm 

Fig. 7  Test results

Fig. 8  Image cropping and resizing
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involves clustering pixels in a way that minimizes both color distance and spatial dis-
tance between pixels. This allows the algorithm to group pixels that are similar in color 
and spatial proximity into superpixels, which can then be used to segment the image 
into meaningful regions.

Other superpixel segmentation algorithms include the Quick Shift algorithm (Vedaldi 
& Soatto 2008), which uses a density-based approach to group pixels that have similar 
color and texture characteristics, and the Felzenszwalb and Huttenlocher algorithm 
(Felzenszwalb & Huttenlocher 2004), which uses a graph-based approach to group pixels 
that have similar color and intensity characteristics.

Superpixel segmentation algorithms have been shown to improve the efficiency and 
accuracy of image processing tasks in computer vision, and have become an important 
tool for researchers and practitioners in the field. Ongoing research aims to further 
improve the performance and applicability of these algorithms, as well as to explore new 
applications for superpixel segmentation in areas such as video processing (Giordano 
et al. 2015) and 3D reconstruction (Penza et al. 2016).

3.2 � SLIC Algorithm

Simple Linear Iterative Clustering (SLIC) (Achanta et al. 2012) is a popular image seg-
mentation algorithm, it is a fast and efficient algorithm that enables accurate and precise 
segmentation of images.

The SLIC algorithm is based on the k-means clustering method, which is a common 
unsupervised machine learning technique. The algorithm works by grouping pixels into 
clusters based on their color and spatial proximity. The SLIC algorithm is particularly 
useful for segmenting images with smooth and uniform regions, such as satellite images 
and medical images.

The SLIC algorithm can be summarized in the following steps:

1.	 The input image is first converted to a LAB color space, which separates the color 
and brightness components of the image.

2.	 The image is then divided into a grid of equally sized superpixels. The size of the 
superpixels is determined by a user-defined parameter, which controls the level of 
granularity in the segmentation.

3.	 The initial cluster centers are then placed at the center of each superpixel. These are 
typically initialized as the mean color and position of the pixels within each super-
pixel.

4.	 The algorithm then iteratively assigns each pixel to the nearest cluster center based 
on both color and spatial distance. This process is repeated until convergence is 
achieved.

5.	 Once convergence is achieved, the cluster centers are updated to the mean color and 
position of the pixels within each cluster.

6.	 Finally, the pixels in each cluster are assigned the label of the cluster center, resulting 
in a segmented image.

Overall, the SLIC algorithm is a powerful tool for image segmentation that is widely 
used in various applications, including computer vision, medical imaging, and remote 
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sensing. It is a fast and efficient algorithm that produces accurate and precise segmenta-
tion results. Therefore, this paper uses SLIC algorithm to obtain the pre-processing seg-
ment superpixels of the original structural crack images.

The SLIC algorithm has two important parameters, namely region_size and ruler, 
which are used to control the size and smoothness of superpixels, respectively.

The region_size is a positive integer that specifies the number of pixels included in 
each superpixel. A smaller region_size generates smaller superpixels, while a larger 
region_size generates larger superpixels. The value of this parameter should be associ-
ated with the size of the input image and the expected size of the superpixels. Typically, 
it is recommended to set it to an integer multiple of the square root of the image size to 
obtain relatively uniform superpixels.

The ruler is a parameter that controls the similarity between pixels in the color space. 
It specifies the weighting factor used when calculating the distance between pixels. A 
smaller value of this parameter results in smaller differences between pixels, resulting in 
higher smoothness of the generated superpixels, but it may also lead to over-smoothing. 
Conversely, a larger value of ruler produces finer boundaries between superpixels, but 
also introduces more noise.

In general, these two parameters can be used to adjust the size and smoothness of 
superpixels to generate the desired results. However, their optimal values depend on 
the specific application and characteristics of the input image, and need to be adjusted 
according to the actual situation.

Figure  9 shows the superpixel segmentation results of crack images under differ-
ent parameter combinations. It can be seen that when the superpixel size is small, the 
superpixels obtained by the SLIC algorithm can more accurately separate cracks from 

Fig. 9  Superpixel segmentation results under different parameter combinations
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the background. However, considering that too small superpixels will greatly increase 
the complexity of the algorithm and reduce the efficiency of the whole method, it is nec-
essary to choose parameters that generate moderately sized superpixels for subsequent 
processing.

Figure  10 shows the superpixel segmentation results of the same crack image when 
the region_size and ruler parameters are set to 5, 10, 20, 50, and 100. It can be seen from 
Fig. 10 that region_size has a significant impact on the final result, and the size of the 
superpixel increases with the increase of region_size. On the other hand, ruler has little 
effect on superpixel segmentation. When it changes and region_size remains the same, 
the obtained superpixels are almost unchanged. This is because for structural crack 
images, except for the crack edge area, other areas of the image are relatively smooth, so 
the smoothness parameter has little effect on the segmentation results.

Therefore, when considering subsequent parameter optimization, this paper only opti-
mizes the parameter region_size, which has a more significant impact on the results.

4 � Crack identification method combining CAM and SLIC Algorithm
According to Sect.  3, it is known that CAM provides the position and distribution of 
cracks in the original image based on the image classification model Vgg16-Crack, but 
this localization is imprecise and cannot obtain the accurate border of cracks. On the 
other hand, according to Sect. 4.2, the superpixel segmentation algorithm can effectively 
preprocess the original image by grouping pixels with similar semantic information into 
the same superpixel, which has clear boundaries, but this unsupervised method cannot 
determine the category of each superpixel.

Therefore, this paper proposes a method that combines CAM and superpixel segmen-
tation. A single image is input into VggCrack to obtain its CAM, and at the same time, 

Fig. 10  Comparison of the effects of parameter changes on the egmentation results
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the SLIC algorithm is used to process the image and obtain the superpixel points in the 
original image.

Assuming the original image is I, the pixel point at (i, j) is Ii,j, and the corresponding 
CAM of I is Ic. The SLIC algorithm segments k superpixels, and the set of pixels con-
tained in the m-th superpixel is Sm.

In the actual recognition process, first, Ic and Sm are calculated. Then, for each m, 
the value of each pixel point in Sm of Ic is calculated, and the average value meanIsm is 
obtained. If the average value is greater than the set threshold t, the superpixel can be 
considered to belong to the crack category. The algorithm flowchart is shown in Fig. 11.

5 � Model parameter optimization based on Bayesian optimization
The algorithm obtained in Sect.  3.3 shows that for the task of crack recognition, the 
parameter "region_size" has a significant impact on the superpixel segmentation results, 
while the "ruler" parameter has almost no effect. On the other hand, when combining 
CAM to determine the category of superpixels, the choice of threshold has a significant 
impact on the final results. Therefore, for the model proposed in this paper, it is nec-
essary to determine the optimal parameter combination (region_size, threshold)opt that 
can achieve the best model performance. Therefore, this paper manually annotated 100 
images in the dataset pixel by pixel, and used them as the ground truth to evaluate the 
model performance under different parameter combinations.

It should be noted that under different parameter combinations, the superpixel seg-
mentation in the dataset needs to be calculated multiple times, and as a machine learn-
ing model, the SLIC algorithm takes a certain amount of time to preprocess the image. 
Therefore, the method of determining the optimal model by traversing each point in the 
(region_size, threshold) parameter space will consume a lot of time, making the opti-
mization difficulty significantly increased. In order to improve the efficiency of model 
optimization, this paper uses Bayesian optimization algorithm to obtain the optimal 
parameter combination.

Bayesian optimization (Frazier 2018) is a powerful algorithm that addresses the 
problem of optimizing complex, black-box functions. This algorithm is based on 
the principles of Bayesian inference, which allows for the efficient exploration of 

Fig. 11  Crack segmentation algorithm process
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high-dimensional parameter spaces. One of the key advantages of Bayesian optimiza-
tion is its ability to balance exploration and exploitation, which enables the algorithm 
to find optimal solutions quickly and efficiently.

In recent years, Bayesian optimization has gained wide-spread use across various 
fields, including machine learning (Snoek et  al. 2012) and computer vision (Zhang 
et al. 2015). In particular, this algorithm has been applied to hyperparameter tuning 
of machine learning models and parameter optimization of computer vision algo-
rithms. By using Bayesian optimization, researchers have been able to achieve state-
of-the-art results in these fields.

The core steps of Bayesian optimization can be divided into four main stages: ini-
tialization, selection, evaluation, and updating. In the initialization stage, an initial 
set of candidate solutions is selected based on some prior knowledge or random 
sampling. In the selection stage, the algorithm uses the probabilistic model to select 
the most promising candidate solution to evaluate next. In the evaluation stage, the 
selected candidate solution is evaluated using the objective function. Finally, in the 
updating stage, the probabilistic model is updated to incorporate the new evaluation 
results, and the process repeats until the optimal solution is found.

One of the key advantages of Bayesian optimization is its ability to balance explora-
tion and exploitation. By using the probabilistic model to guide the search, the algo-
rithm can explore the solution space to find promising regions while also exploiting 
the most promising candidates. Additionally, the probabilistic model allows Bayesian 
optimization to handle noisy or incomplete evaluations, making it a robust algorithm 
for real-world optimization problems.

In this paper, we propose a novel algorithm that utilizes machine learning and 
deep learning algorithms from the computer vision field to identify the structural 
crack. Specifically, we aim to optimize parameters for both the SLIC algorithm 
from traditional machine learning and the CAM algorithm from deep learning. To 
achieve this, we employ Bayesian optimization to efficiently search the high-dimen-
sional parameter space and find the optimal parameter combinations. First, the 
range of the two parameters are determined by experience: 10 ≤ region_size ≤ 100, 
10 ≤ threshold ≤ 250.

And as a semantic segmentation model, the objective function of Bayesian optimi-
zation is to select the most important evaluation metric in the semantic segmentation 
field, intersection over union (IoU).

During the optimization process, the Bayesian optimization algorithm is used for 
unsupervised semantic segmentation models with 40 different hyperparameter com-
binations. It should be noted that Bayesian optimization optimizes parameters in 
the real domain, while (region_size, threshold) are both positive integers, so their 
rounded-down values were treated as the actual values. The objective function values 
for each hyperparameter combination are shown in Table 4.

Figure 12 shows the relationship between parameters and the target in the param-
eter space calculated by Gaussian process regression. As can be seen from Table 4 and 
Fig. 12, when (region_size, threshold) = (52, 138), the target value reaches the maxi-
mum of 0.7003. Therefore, the model trained with this hyperparameter combination 
is used as the optimal model for crack semantic segmentation.
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Figure  13 illustrates the crack identification results obtained from several crack 
images processed using the method proposed in this paper and their comparison with 
the manually labeled ground truth. From Fig. 13, it can be seen that the method pro-
posed in this article can accurately identify cracks in images, approaching the results 
of manual labeling.

Table 4  Bayesian optimization process

Iteration Target Region_size Region_size 
(rounded)

threshold Threshold 
(rounded)

1 0.0835 38.48 38 220.4 220

2 0.001419 23.13 23 246.2 246

3 0.3245 49.04 49 189.4 189

4 0.297 19.14 19 36.2 36

5 0.4203 89.92 90 142.1 142

6 0.5637 34.15 34 125 125

7 0.559 35.46 35 122.1 122

8 0.183 100 100 10 10

9 0.5203 10 10 112.5 113

10 0.5593 10 10 152.8 153

11 0.6669 43.94 44 144.3 144

12 0.4376 83.52 84 86.88 87

13 0.6058 59.3 59 134 134

14 0 100 100 250 250

15 0.5919 36.05 36 157 157

16 0.5294 57.2 57 152.9 153

17 0.4178 10.28 10 78.96 79

18 0.4138 49.59 50 85.22 85

19 0.4725 99.96 100 114 114

20 0.666 46.21 46 136.3 136

21 0.6292 38.38 38 142.3 142

22 0.4499 10.31 10 177.9 178

23 0.3538 99.52 100 63.76 64

24 0.6778 49.4 49 141 141

25 0.6698 47.11 47 140.9 141

26 0.1317 100 100 184.7 185

27 0.1907 49.31 49 10 10

28 0.5842 62.1 62 110.1 110

29 0.5682 10 10 133.6 134

30 0.6527 51.22 51 123.4 123

31 0.2081 11.04 11 12.78 13

32 0.3062 62.81 63 52.58 53

33 0.6648 50.95 51 132.3 132

34 0.4945 78.68 79 116.1 116

35 0.6528 47.02 47 148.1 148

36 0.5732 49.48 49 110.3 110

37 0.7003 51.84 52 138.4 138
38 0.3674 31.2 31 63.33 63

39 0.4653 25.52 26 97.22 97

40 0.4361 99.73 100 92.86 93
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6 � Model test
To evaluate the performance of the proposed algorithm, this paper selects an additional 
150 images. Of these 150 images, 100 came from the aforementioned public dataset, and 

Fig. 12  Parameter-target surface based on Gaussian process regression

Fig. 13  Comparison between automated segmentation results and manual labeled results
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the remaining 50 were sourced from on-site shots of bridge crack images. These images 
are then labeled at the pixel level, and the cracks in the images were identified using 
traditional threshold segmentation algorithm, strong supervised deep learning method, 
and the weakly-supervised algorithm proposed in this paper.

In the strong supervised deep learning method, this paper use the classic model in the 
semantic segmentation domain, U-Net. U-Net, widely applied in image segmentation 
tasks, adopts a U-shaped network structure which includes a contracting path known as 
the encoder and an expanding path referred to as the decoder. The encoder progressively 
reduces the size and channel number of the feature map through a series of convolu-
tion and pooling operations, extracting high-level semantic information from the image. 
The decoder, on the other hand, restores the feature map to its original size through up-
sampling and convolution operations and refines and reconstructs it in conjunction with 
the encoder’s features. This encoder-decoder structure enables U-Net to simultaneously 
capture local details and global context information, thus achieving excellent perfor-
mance in image segmentation tasks. Additionally, U-Net improves the accuracy of seg-
mentation results by using skip connections to link the feature maps of the encoder and 
decoder, thereby aiding information transmission and gradient flow. Owing to its sim-
ple yet effective design, U-Net has become the preferred network architecture for many 
image segmentation tasks. Its structure is shown in Fig. 14.

This paper trains the U-Net model for crack detection using data from the training 
set. The model is trained for 10,000 iterations with a learning rate of 0.00001. The curve 
of the model’s loss function during the training process is shown in Fig. 15. As can be 
observed, the model’s loss function gradually decrease and remain constant, indicating 
that the model converges after 10,000 iterations of training.

Upon completion of the training, the aforementioned 150 images are crack-detected 
using three automated algorithms, with results shown in Fig. 16. Compared to the man-
ually labeled results, the detection results obtained using traditional digital image pro-
cessing methods are inferior, with discontinuous cracks and smaller cracks with slight 

Fig. 14  Structure of U-Net
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Fig. 15  Training process of U-Net

Fig. 16  Comparison of detection results between different methods and ground truth
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color differences from the background often undetectable. The detection model based 
on U-Net can effectively detect surface cracks in the structure, but when the background 
color deviates significantly from that of training set, severe errors also occur in deep 
learning methods. As shown in the last row of Fig. 16, where the background color of the 
crack image is darker, deep learning methods mistakenly recognize the background as a 
crack. The method proposed in this paper can effectively identify most cracks, but it also 
has a lack of precision in some aspects. For instance, if an image contains both coarse 
and fine cracks, the finer cracks are often overlooked by the algorithm.

To quantitatively analyze the performance of the three algorithms on the test set, this 
paper compares the results obtained by the three automated detection algorithms with 
the ground truth and calculates the sizes of the evaluation metrics for the three methods 
on the test set. In the field of computer vision semantic segmentation tasks, commonly 
used evaluation metrics include IoU (Intersection over Union), mIoU (mean Intersec-
tion over Union), PA (Pixel Accuracy), and mPA (mean Pixel Accuracy). These metrics 
can be used to evaluate the detection performance and accuracy of the semantic seg-
mentation model on the dataset.

IoU is a metric used to measure the degree of overlap between prediction result and 
ground truth result, i.e., the area of intersection of the two results divided by the area 
of their union. mIoU is an indicator obtained by averaging the corresponding IoU for 
different categories and is used to evaluate the overall segmentation performance. Both 
IoU and mIoU have a value range between 0 and 1, with higher values indicating higher 
average accuracy of semantic segmentation. The segmentation in this paper has two 
classes: crack and background, so there are three IoU evaluation indicators: IoUcrack, 
IoUbackground, and their mean value, mIoU.

PA is another commonly used evaluation metric in the field of semantic segmenta-
tion, used to measure the accuracy of pixel-level recognition. It compares the consist-
ency between the category label of each pixel in the prediction results and the real label 
by calculating the ratio of the number of correctly classified pixels in each category to 
the total number of pixels in that category. mPA is an indicator obtained by averaging 
the corresponding PA for different categories and is used to evaluate the overall seg-
mentation accuracy. The value range of PA is also between 0 and 1, with PA values closer 
to 1 indicating higher pixel classification accuracy by the semantic segmentation algo-
rithm. Similar to IoU, there are also three PA evaluation indicators in this paper: PAcrack, 
PAbackground, and mPA.

This paper compares three automated algorithms and evaluates their performance 
on the test set using the six evaluation metrics mentioned above. The results are shown 
in Fig. 17. From Fig. 17, it can be observed that among the three methods, the perfor-
mance of the traditional digital image processing algorithm is poor, with IoU and PA 
metrics for cracks only around 0.5 and lower average metrics compared to the other two 
methods. For the supervised learning method, although the U-Net model slightly lags 
behind the proposed algorithm in some categories, it performs the best overall, indicat-
ing that supervised learning still achieves good accuracy in semantic segmentation. The 
performance of the proposed algorithm on the test set is slightly worse than the U-Net 
model but far superior to the traditional algorithm. This suggests that the proposed 
algorithm can achieve performance close to that of supervised learning models in the 
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task of semantic segmentation of cracks, while only requiring image-level annotations, 
which have much lower annotation costs compared to supervised learning. Therefore, 
the proposed method has great potential and broad application prospects in engineering 
applications.

7 � Conclusion
In this paper, a weakly-supervised structural surface crack detection algorithm is pro-
posed. Firstly, a CNN model Vgg16-Crack for classification is trained, and then the crack 
area in the image is detected based on Grad-CAM +  + algorithm. In this paper, the orig-
inal Grad-CAM +  + algorithm is improved and optimized. Through data augmentation 
and weight calculation formula optimization, the generated CAM can accurately reflect 
the position and distribution of cracks in the image. Afterwards, the superpixel segmen-
tation algorithm SLIC is used to preprocess the original crack image to generate multi-
ple regions with similar semantic information. Then, this paper proposes a method that 
combines superpixel method with CAM to achieve more accurate semantic segmenta-
tion of cracks by binarizing the superpixels.

The algorithm proposed in this paper can use the classification model with low data 
labeling cost to detect the crack distribution in the image, which reduces the demand for 
human and material resources of the model. However, CAM can only give the approxi-
mate distribution of cracks, when the crack is relatively thin or short, the high heat value 
areas in CAM may not reflect its existence well, which may lead to incorrect discrimi-
nation of the superpixel where the thin or short crack is located, even if the superpixel 
can be preprocessed accurately. This can lead to a decrease in accuracy. In further work, 
image super-resolution and other techniques will be used to achieve accurate detection 
of multi-scale cracks under weak supervision, specifically targeting the above situation.
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