
1 Introduction
Degradation of bridge structures due to environmental and traffic factors is inevitable. 
The collapse of such structures might result in civil and economic casualties. There-
fore, a maintenance strategy capable of detecting or even predicting potential failure 
is crucial to ensure the safety and reliability of bridges. Structural Health Monitoring 
(SHM) approaches are nowadays prevalent in evaluating structural reliability and dam-
age detection during the service life of civil structures such as bridges. SHM approaches 
intend to directly or indirectly assess the condition of the bridge structures while they 
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Abstract 

In bridge structural health monitoring, the response of the bridge while the vehicle 
is on the bridge, is called a vehicle-bridge interaction (VBI) response. If the vehicle 
and the bridge are dynamically coupled, the VBI response depends on the bridge’s 
and the vehicle’s dynamic properties. Therefore, the damage detection techniques 
based on the bridge resonances become questionable due to the dynamic coupling 
between the bridge and the vehicle. This study investigates the influence of vehicle 
dynamics on the bridge’s time-dependent resonances. Vehicle-Induced Delta Fre-
quency (VIDF) represents the changes in the bridge’s time-varying resonances result-
ing from the vehicle-bridge interaction, while Damage-Induced Delta Frequency 
(DIDF) accounts for the additional alterations caused by bridge damage. The dynamic 
interaction between vehicles and bridges (VBIs) is characterized by the frequency ratio 
between the vehicle (super-system) and the bridge (sub-system). The vehicle fre-
quency is influenced by its dynamics, particularly the suspension systems. Two vehicle 
models, single suspension and dual suspension vehicles representing passenger 
trains and freight trains, respectively, are analyzed to assess the significance of vehicle 
dynamics on VIDF and DIDF. The results demonstrate that both vehicle models experi-
ence resonance, which magnifies the dynamic response to damage. However, not all 
types of vehicles possess the desired dynamic characteristics for effective bridge health 
monitoring. Trains with single suspension systems exhibit more pronounced changes 
in the bridge’s frequency response. This characteristic makes them more suitable 
for effective bridge health monitoring and damage detection.
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are in operation. Therefore, the input of the SHM systems is mainly the vehicle-bridge 
interaction (VBI) response.

A vehicle-bridge interaction (VBI) refers to the dynamic coupling between a bridge 
and a passing vehicle, resulting in a time-varying process. The dynamic response of 
the VBI system is influenced by the dynamic properties of both the vehicle and the 
bridge. Understanding the dynamic interaction between vehicles and bridges is impor-
tant for both direct and indirect approaches to bridge damage detection. In indirect 
approaches (Wang et al. 2022; Yang et al. 2004), either the passing vehicle (Zhang et al. 
2023) or both the vehicle and the bridge (Sarwar and Cantero 2023) are instrumented. 
The focus of the current study is on the direct approach, where the VBI response is col-
lected through instrumented bridges.

The VBI models available in the literature have evolved from moving constant force 
models to complete train-track-bridge interaction models  (Zhai et  al. 2019). Mov-
ing constant force models have been widely used to model the cases where either the 
weight of the vehicle is much smaller than the weight of the bridge or the vehicle-bridge 
dynamic coupling is not of interest  (Zhai et al. 2019). Therefore, such a model cannot 
capture the dynamic interaction between the vehicle and the bridge. A more detailed and 
computationally more expensive multi-body vehicle model is normally implemented to 
verify safety, ride comfort, and the stability of bridges (Zhu et al. 2017; Zhang et al. 2016; 
Youcef et al. 2013; Yang and Yau 2017) or to investigate the wheel-rail vertical interac-
tions in case of track irregularities (Zhai and Sun 2008; Zhai and Cai 2016) mainly in the 
domain of high-speed trains and not focusing on the condition of the bridge. Despite the 
different interests, the common challenge is the extracting of the dynamic characteris-
tics during the passage of the train, as they are important for condition assessment of the 
bridge as argued in Mostafa et al. (2021, 2022).

Track irregularities are an important source of complexity in the dynamics response. 
Short-wavelength track irregularities contribute to noise in trains and the environ-
ment  (Xin et  al. 2019), while long-wave irregularities induce low-frequency vertical 
oscillations in high-speed trains, where the oscillation frequency is directly proportional 
to the train’s speed  (Hung and Hsu 2017), and in cases where the train’s speed is low, 
this frequency can be less than 1 Hz. Since this study is focused on low-speed trains, 
track irregularities are not further taken into account. It should be noted though that 
deformation of the bridge due to the presence of the train is not considered to be track 
irregularity and is taken into account.

There is a rich literature on the implementation of a moving single-stage suspension 
vehicle on a bridge employing various numerical methods for different purposes such 
as time-frequency analysis  (Hester and Gonzalez 2012), extracting instantaneous fre-
quency (IF) (Roveri and Carcaterra 2012), damage detection (Huseynov et al. 2020), and 
so on. Li et al. (2003) modeled a moving vehicle with a primary suspension system on a 
simply supported beam and obtained the fundamental frequency of the bridge utilizing 
a step-wise solution of the eigenvalue problem at each step of numerical integration. A 
similar approach was utilized in Law and Zhu (2004) where the bridge resonance is again 
calculated based on the solution of the eigenvalue problem. Yang et  al. (2013) devel-
oped a closed-form solution for the frequencies of a VBI system by including only the 
first mode shape of the system where the vehicle is modeled as a 1-DOF sprung mass. 
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Cantero et al. (2017) extracted the resonance of a modeled bridge subjected to a moving 
sprung mass by applying the singular value decomposition technique (SVD) to capture 
the variation of the bridge resonance  (Cantero et  al.  2019). Marchesiello et  al. (2009) 
applied continuous wavelet transform (CWT) on the measured acceleration response 
of a scaled bridge-like structure under a moving train without any suspension, and the 
time-dependent bridge resonance was successfully extracted. The main objective of the 
above studies was either applying or developing different approaches to extract the time-
dependent resonances of bridges meaning that the influence of the vehicle dynamics on 
the time-dependent resonances of bridges in healthy or damaged conditions is not fully 
explored.

The influence of the vehicle dynamics on the dynamic response is addressed in some 
field measurements. Cantero et  al. (2017) experimentally applied CWT to a truck-
induced bridge vibration, but no clear pattern of energy distribution in the time-fre-
quency domain was found (Cantero et al. 2017). Xin et al. (2019) proposed an enhanced 
empirical wavelet transform (EWT) approach, based on the synchro-extracting trans-
form (SET) (Yu et al. 2017), for the time-frequency analysis of a highway bridge under a 
controlled traffic event; i.e. the passing of two trucks. Li et al. (2020) applied an enhanced 
short-time Fourier transform (STFT) based on synchro-extracting transform (SET) on 
the acceleration response of a cable-stayed single-lane highway bridge in Sydney under 
a passing truck and extracted the instantaneous frequency of the bridge. Regarding rail-
way bridges, He et al. (2011) applied the empirical mode decomposition (EMD) to the 
forced vibration response of a railway bridge in China, and by means of spectral analysis 
of the intrinsic mode functions (IMFs). They concluded that the modal frequencies of the 
bridge change due to the presence of the train. Cantero et al. (2016) applied the Wavelet 
transform in combination with the modified Littlewood-Paley method on the response 
of the Skidtrask bridge in Sweden. The proposed method did not successfully identify 
the time-dependent bridge resonance from the bridge’s forced vibration response.

Unlike a few successful time-frequency analyses for highway bridges under a moving 
truck, railway bridges have not been fully explored yet. It is suggested that the reason 
for the limited success compared to highway bridge analyses is the vehicle’s second-
ary suspension system which aims to provide passenger ride comfort by isolating the 
vehicle body from the dynamic loads and vibrations between the wheel and rail  (SKF 
Group 2011). This second-stage suspension system not only affects the train-bridge cou-
pling but also introduces new vibrating modes that can affect the entire VBI system. It 
is concluded in Cantero et al. (2016) that for railway bridges, the dynamic interaction 
between the vehicle and the bridge is complex and highly dependent on the mechanical 
properties of the suspension systems and the distribution of the masses within the vehi-
cle. Many advanced VBI models have been developed, but these have not been applied to 
analyze the dynamic coupling and the time-dependent resonances of the system for the 
purpose of condition monitoring or damage identification, which is the objective of the 
research of the authors. On the one hand, detailed models are sophisticated and com-
putationally expensive to investigate the vehicle-bridge interaction, on the other hand, 
modeling a multi-axle train as a single or dual suspension point mass may sound over-
simplified. However, Fryba (2013) stated that if the vehicle axle base is not comparable 
with the bridge span length, the vehicle can be modeled as a suspended lumped mass.
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Given the earlier-mentioned importance of the number of suspension stages, the cur-
rent study investigates 1) a single-suspension and, 2) a dual-suspension vehicle model, 
which are accurate yet simple models to deal with this complicated interaction to inves-
tigate the influence of the vehicle dynamics on the healthy and damaged bridge response. 
Note that freight trains have a single stage of suspension (Iwnicki et al.(2019), locomo-
tives can have one or two suspension stages, whereas passenger trains have two or more 
suspension stages to provide ride quality (Spiryagin et al. 2016).

Previously, the authors recognized the importance of extracting the instantaneous 
frequency (IF) and showed in  Mostafa et  al. (2021) that the Wavelet Synchro-Squeezed 
Transformation (WSST) outperforms methods like Short-Term Fourier Transformation 
(STFT) and Continuous Wavelet Transformation (CWT). In Mostafa et al. (2022) it was 
then shown that the IF can be used to distinguish damage from operational conditions, 
such as the mass of the train, the temperature, etc. The train dynamics itself were only 
taken into account to a limited extent: a single sprung mass was used. In the current study, 
the performance of the damage detection, based on IF extraction via the WSST method 
and the proposed damage detection method technique will be evaluated for single and 
dual-suspension vehicle models. This paper therefore investigates the significance of the 
vehicle dynamics on the dynamic interaction between vehicles and bridges, by extracting 
the bridge’s instantaneous frequency response under intact and damaged conditions. The 
vehicle-bridge dynamic interaction may mask or magnify the damage influence on the VBI 
system response. Utilizing those vehicles that magnify the damage leads to a more efficient 
SHM strategy since the data collection and, subsequently, the data analysis are optimized.

2  Model and data analysis method
The single suspension vehicle model has been used before to investigate the influence 
of the vehicle dynamics on the bridge resonances  (Yang et  al.  2013). The influence of 
the vehicle-bridge coupling on the damaged bridge response has not been explored. 
For a single suspension vehicle model the determinant frequency ratio is defined as the 
vehicle (the super-system) frequency over the bridge (the sub-system) frequency. It has 
been concluded in Yang et al. (2013) that the most substantial interaction occurs at reso-
nance when the car-body bouncing (the vertical oscillation) frequency approaches the 
bridge frequency. However, the determinant frequency ratio for a dual suspension vehi-
cle model cannot be defined by the car-body to the bridge frequency ratio due to the 
intermediate bogie suspension. For the dual-suspension vehicle model, the determinant 
frequency ratio is the bogie (the super-system) over the bridge (sub-system) frequency.

To set up a model with realistic parameters, characteristics of different trains with 
dual suspension systems are collected from literature sources and presented in Table 1. 
It can be seen that the car-body bouncing frequency varies in the range 0.52-1.32 Hz. 
In Eurocode EN 1991-2 (2003), the lower limit of the bridge fundamental frequency is 
given by fr = 23.58L−0.592 for a span length between 20-100 m, which results in a fre-
quency range of 1.7-4 Hz. Therefore, it can be concluded that these two vibration modes, 
the car-body bouncing and the bridge bending for dual suspension vehicles, are well-
separated and that resonance will not occur. The bogie bouncing frequency range as also 
presented in Table 1 is 2.3-8.6 Hz which overlaps with the bridge frequency range and 
can therefore cause resonance. Regarding freight trains, having only a single suspension, 
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the car-body bouncing frequency range is 0.9-4 Hz (Iwnicki et al. 2019), which also over-
laps with the bridge frequency range.

Figure 1 presents a single suspension and a dual suspension vehicle model represent-
ing a freight train or a locomotive (a) and a passenger train (b) respectively. The variation 
of the bouncing frequency is also displayed. The current study focuses on the frequency 
ratio range of 0.55-1.7 for both vehicle models to shed light on the influence of the vehi-
cle dynamics on the coupled system frequency response in two conditions; away-from-
resonance, and near-resonance.

All finite element simulations are conducted in two-dimensional space in ABAQUS 
where Euler-Bernoulli beam elements are used. An extended version of a simply sup-
ported beam is used to simulate the bridge numerically. The bridge model is extended 
to obtain the bridge’s free vibration, while the mass is not present on the bridge. To this 
end, an approaching and leaving length are added before and after the bridge to properly 
locate the mass during the forced and free vibration phases. The extension sections are 
pinned to the ground, and they allow to generate the bridge response while the vehicle 
is approaching and leaving the bridge. The bridge model (i.e. the center part of 80 m) 
has 1600 rectangular beam elements of A = 0.4  m2 cross section area and with Young’s 

Table 1 Vehicle dynamic properties for dual-suspension trains

Resonance frequency [Hz] Component mass [kg]

Train Bogie Car-body Bogie Car-body

ETR500-locomotive (Liu et al. 2009) 4.83 0.65 3896 55976

ETR500-passenger (Liu et al. 2009) 3.85 0.52 2760 34231

Thalys-237A (Kouroussis et al. 2011) 5.93 1.03 3261 53442

Thalys-237B (Kouroussis et al. 2011) 8.6 1.32 1400 28500

Thalys-237A (Kouroussis et al. 2011) 3.75 1.18 8156 40850

Eurostar-237A (Kouroussis et al. 2011) 6.5 1.1 3075 54200

Eurostar-237B (Kouroussis et al. 2011) 4.1 1.01 2363 22000

Eurostar-237B (Kouroussis et al. 2011) 2.86 0.96 9580 36000

ICE-passenger (Doménech et al. 2014) 5.84 0.67 2373 34000

ICE-locomotive (Doménech et al. 2014) 6.6 1.21 5600 61000

Hauling-locomotive (Spiryagin et al. 2013) 2.36 0.65 14860 87140

Fig. 1 The vehicle models used in the current study
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modulus E = 210  GPa, density ρ = 7860  kg/m3. The fundamental frequency of the 
bridge model is 2.99 Hz. Rayleigh damping with the coefficients α = 0.001 and β = 0.001 
is added to increase the stability of the solver and viscous damping with a damping coef-
ficient of C = 10, 000 N·s/m (well below the critical damping: ζ ≈ 4 · 10−3 ) is added to 
limit the motion of the car body.

The damage detection concept proposed by the authors in Mostafa et al. (2022) implies 
that the bridge’s forced vibration response is more sensitive to damage than the free 
vibration response. The proposed damage-sensitive feature is the bridge instantaneous 
frequency and the magnitude variation has been introduced. The magnitude variation δ 
quantifies the deviation of the measured instantaneous frequency for a VBI system, Fm , 
from the baseline instantaneous frequency of the VBI system, Fb.

where fb refers to the bridge fundamental frequency, which is constant in time and thus 
a scalar value. In the transient phase, the bridge frequency continuously changes in time 
(as defined by the time steps i = 1 : n ) depending on the location of the vehicle. The 
denominator of Eq. (1) calculates the area in the frequency versus time plot bounded by 
Fb and fb for the intact bridge. It, therefore, corresponds to the change of the baseline 
instantaneous frequency of the intact bridge induced by the operational condition and 
is referred to as the Vehicle Induced Delta Frequency (VIDF). Once the instantaneous 
frequency of a measured response differs from the baseline, which would be the case 
when damage is present, then the bounded area between Fb and Fm is a nonzero value 
that quantifies the magnitude variation. The numerator of Eq. (1) is therefore referred to 
as the Damage Induced Delta Frequency (DIDF). The magnitude variation δ thus is the 
ratio between the bridge instantaneous frequency variation induced by damage and the 
bridge instantaneous frequency variation induced by the vehicle.

3  Single suspension vehicle model
3.1  The influence of the vehicle dynamics on the intact bridge instantaneous frequency

The single suspension vehicle model represents a locomotive or freight train that in prac-
tice has a larger mass than the passenger trains. For the single suspension vehicle model 
the natural frequency of the vehicle (the super-system) is (kcar/mcar) where the mass 
of the car is about 15–35% of the bridge mass. In the current study, the vehicle mass 
ranges from 40 tons to 80 tons, denoted as m1 to m9. The mass values are distributed 
within this range with a step size of 5 tons. The car mass is set such that it covers the 
common range of car masses presented in Table 1. Having the vehicle mass and the tar-
get frequency ratio range, the vehicle stiffness can be calculated. In the current study, the 
vehicle stiffness variation range is 9 MN/m to 40 MN/m, denoted as k1 to k9. These stiff-
ness values are distributed within the specified range, with a step size of 3.875 MN/m. 
Therefore, by taking into account the 9 mass variations (m1 to m9) and the 9 stiffness 
variations (k1 to k9), this study involves the modeling of a total of 81 VBI systems.
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Once the vehicle model properties are set, the influence of the vehicle dynamics on 
the instantaneous frequency of the intact bridge model is investigated. There are two 
approaches to obtain the instantaneous frequencies of VBI systems: 1) step-wise modal 
analysis and, 2) dynamic implicit analysis. The step-wise modal analysis aims to calculate 
the system resonances of the VBI system depending on the location of the vehicle on the 
bridge. The step-wise approach is computationally affordable, but it is a static approach 
that is not able to capture the local variation of the instantaneous frequency due to the 
presence of damage. A dynamic analysis is computationally expensive, yet it provides a 
high-resolution instantaneous frequency. Therefore, the step-wise modal analysis is 
used to quantify the intact bridge resonances, whereas the dynamic implicit integration 
scheme is used to calculate the damaged bridge acceleration response and investigate the 
influence of the vehicle dynamics on the instantaneous frequency of the damaged bridge.

The step-wise modal analysis starts by locating the vehicle on the left support of the 
bridge. For the next step, the vehicle is located at 10 m distant from its previous loca-
tion. The steps are repeated until the vehicle reaches the bridge’s right support. At each 
step, the eigenfrequencies of the system corresponding to the car-body bouncing and 
the bridge resonance are collected as a numerical array. Figure 2 presents a set of results 
of the step-wise modal analysis for the single suspension vehicle model with constant 
stiffness (k4) and variable mass (m1 to m9). The horizontal axis is labeled as the relative 
vehicle location which represents the ratio of the distance traveled by the vehicle on the 
bridge and the bridge length. The light blue area corresponds to the VIDF, as defined 
in Eq. (1), since the VIDF is the area enclosed by the instantaneous frequency and the 
bridge frequency (dashed line in Fig. 2).

Fig. 2 The bridge (blue marker) and the vehicle (red marker) frequency variation during a vehicle passage 
for a constant vehicle stiffness (k4, k = 20.625 MN/m) and nine different vehicle mass values (indicated by the 
resulting car-bridge frequency ratio). The bridge’s fundamental frequency is displayed as a dashed black line. 
The light blue area corresponds to the VIDF
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The top-left corner subplot of Fig. 2 represents a VBI system with the first two reso-
nance frequencies of 2.9 Hz and 3.6 Hz corresponding to the bridge bending resonance 
frequencies and the car bouncing respectively. These values are visible when the vehi-
cle is located at the left support. The bridge bending frequency (blue curve) appears as 
the first mode of the coupled system. While the vehicle moves towards the mid-span 
the bridge frequency decreases to 2.3 Hz when the vehicle is at the mid-span and again 
comes back to the initial value (2.9Ḣz) when the vehicle arrives at the right support. The 
vehicle frequency (red curve) increases to 4.5 Hz when the vehicle is located at the mid-
span, and when the vehicle comes back to the right support the frequency also comes 
back to the initial value (3.6 Hz). This pattern is valid as long as the frequency ratio is 
larger than 1. Once the frequency ratio comes close to unity, this pattern is changed. 
It can be seen in the middle row, center plot of Fig. 2 that the vehicle frequency is now 
the first (lowest) mode of the coupled system and it decreases when the vehicle moves 
towards the bridge mid-span.

The way the resonance frequencies change can be explained by the relative motion of 
the bridge and the vehicle. The first resonance mode of the bridge-vehicle system is com-
parable to an in-phase motion of the vehicle mass and the bridge: the car body moves 
in the same direction as the bridge and follows its vertical displacement, as shown in 
Fig. 3a. As a result, the instantaneous resonance frequency of the bridge decreases when 
the mass moves toward the mid-span position, similar to the effect of an added mass. 
The second resonance is comparable to an out-of-phase motion, where the vehicle mass 
and bridge move in opposite directions, as shown in Fig. 3b. This is similar to the effect 
of an added stiffness and hence results in an increase of the instantaneous resonance fre-
quency when the mass moves toward the mid-span position.

The VIDF has been proposed to quantify the influence of vehicle dynamics on the 
vehicle-bridge coupled system. The VIDF as introduced in Eq.  (1) calculates the area 
bounded by Fb : the bridge instantaneous frequency (blue curves in Fig.  2) and fb the 
bridge fundamental frequency (the dashed black line at 2.99 Hz in Fig. 2) for the intact 
bridge. It can be observed in Fig. 2 that the VIDF increases when the frequency ratio 
approaches unity and decreases when the frequency ratio gets smaller or larger than 
unity.

The VIDF is calculated for all 81 VBI systems and plotted against the frequency ratio 
in Fig. 4. Each marker in Fig. 4 corresponds to one of the VBI systems, where the color 

Fig. 3 Mode shapes retrieved from the step-wise eigenfrequency analyses show that the car and the bridge 
move a in-phase or b out-of-phase
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indicates the stiffness and the size of the marker the mass ratio (small: m1; large: m9). 
The solid markers correspond with the case shown in Fig. 2 (k4, m1-m9). As previously 
observed from Fig. 2, the maximum value for the VIDF is reached at the resonance con-
dition, where the frequency ratio equals unity.

Figure 4 shows in addition that the VIDF drops quicker when moving away from reso-
nance for the VBI systems with a frequency ratio larger than unity compared to VBI 
systems with a frequency ratio smaller than unity. This is illustrated by the non-equal 
spacing between markers below and above resonance for the purple, solid markers (case 
k4, m1-m9). The VIDF for a given absolute distance from the resonance condition is 
lower for a frequency ratio higher than unity compared to that of a frequency ratio lower 
than unity. This behavior can be attributed to the different effects of added mass versus 
added stiffness on the change of the instantaneous frequency Fb.

3.2  The influence of the vehicle dynamics on the damaged bridge instantaneous 

frequency

The numerator of Eq.  (1) introduces the Damage Induced Delta Frequency, DIDF. The 
main objective of this section is to quantify DIDF for the modeled VBI systems and 
investigate the influence of the vehicle dynamics on the DIDF. The question is in which 
situation the DIDF is magnified and thus when optimal conditions for bridge damage 
detection occur.

The numerical model of the bridge in the current study consists of 1600 elements of 
50 mm long. To implement damage, the stiffness of 16 elements along the bridge mid-
span is reduced by 50%. The total length of the damaged area is thus about 1% of the 
bridge span length. The damage severity and length are kept constant for all step-wise 
modal analyses. The same mass and stiffness variations (9×9=81 VBI systems) are used 
as in the previous section. A more detailed study on the effect of various damage sce-
narios is presented in Mostafa et al. (2022).

Among the 81 vehicle-bridge interaction (VBI) systems studied, two examples were 
selected to illustrate the instantaneous frequencies of the bridge in both intact and 
damaged conditions. Figure 5a shows the instantaneous frequency of the VBI system 

Fig. 4 VIDF versus car-bridge frequency ratio. Each color corresponds to the stiffness k1 to k9, while the 
size of the marker represents m1 (small) to m9 (large). The set of solid markers is used as an example for the 
step-wise analysis



Page 10 of 18Mostafa et al. Advances in Bridge Engineering            (2023) 4:22 

with the lowest car-bridge mass ratio of 0.16 (m1) and the highest car-bridge fre-
quency ratio of 1.68 (corresponding with the highest stiffness case k9). This VBI sys-
tem exhibits an in-phase regime, where the vehicle behaves as an added mass on the 
bridge, as depicted Fig. 3a. In Fig. 5a, the instantaneous frequency of the intact bridge 
is represented by the black curve, while the red curve represents the instantaneous 
frequency of the damaged bridge. The DIDF represents the bounded area between 
the frequency curves of the intact and damaged bridges. In Fig. 5a, it is evident that 
the damaged bridge frequency curve (red curve) exhibits a local reduction around the 
area of damage. This reduction in the bridge’s instantaneous frequency is attributed 
to the decreased stiffness of the damaged elements and the additional mass intro-
duced by the vehicle.

A VBI system with the lowest vehicle-bridge frequency ratio is chosen as a second 
example. The instantaneous frequency of the VBI system with a car-bridge mass ratio 
of 0.32 (m9) and a car-bridge frequency ratio of 0.55 (the lowest frequency ratio, and 
lowest stiffness case k1) is shown in Fig.  5b. This VBI system represents an out-of-
phase regime, where the vehicle mass counteracts the bridge motion. Again, the black 
curve represents the intact bridge’s instantaneous frequency, while the red curve rep-
resents the damaged bridge’s instantaneous frequency. Unlike Fig. 5a, where a larger 
frequency reduction was observed, Fig.  5b shows only a marginal frequency reduc-
tion around the damage location. This is because the vehicle is effectively acting as an 
added stiffness in this case.

Only a subset of the 81 VBI systems is used to investigate the influence of the 
vehicle dynamics on the Damage Induced Delta Frequency (DIDF), considering the 
computational time of each individual dynamic simulation. The dynamic simula-
tions are performed for 5 VBI systems with the highest vehicle stiffness value (k9, 
k =3.6MN/m) and for 5 VBI systems with the lowest vehicle stiffness value (k1, k =

0.9Mn/m). Figure  6 displays the resulting DIDF for these two times 5 VBI systems, 
where the blue markers correspond with the lowest stiffness (k1) and the red markers 
with the highest stiffness (k9).

Fig. 5 The intact and the damaged bridge instantaneous frequency ridges are displayed in black and red 
respectively, for two VBI systems; a the VBI system with a car-bridge mass ratio of 0.16 (m1) and a car-bridge 
frequency ratio of 1.68 and, b the VBI system with a car-bridge mass ratio of 0.32 (m9) and a car-bridge 
frequency ratio of 0.55
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The observed pattern of the DIDF is similar to that of the VIDF. A maximum is 
reached if the frequency ratio is unity. Moving away from resonance yields a decrease of 
the DIDF. The VBI systems having a frequency ratio lower than unity correspond to an 
out-of-phase motion of the bridge and vehicle, while the VBI systems with a frequency 
ratio higher than unity correspond to an in-phase motion of the bridge and vehicle. The 
size of the marker indicates the car-bridge mass ratio (m1, m3, m5, m7, and m9), which 
for both stiffnesses k1 and k9 is increasing with increasing frequency ratio. Similar to the 
VIDF, the DIDF drops quicker when moving away from the resonance condition for the 
in-phase case (frequency ratio > 1 ), compared to the out-of-phase case (frequency ratio 
< 1 ). The resonance condition is not reached for both sets of VBI systems. The mass 
ratio for the specific combination of bridge and train types under investigation would 
become very unrealistic. However, it can still be observed from the graph that the lower 
stiffness case (k1) shows significantly lower values for the DIDF than the higher stiffness 
case (k9).

It can be concluded that for a unique damaged bridge, different vehicles trigger the 
damage differently. Furthermore, the DIDF for VBI systems having a frequency ratio 
larger than unity seems to be larger than for the VBI systems having a frequency ratio 
less than unity. Finally, being close to resonance (i.e. frequency ratio equal to unity) mag-
nifies the response to damage.

4  Dual suspension vehicle model
4.1  The influence of the vehicle dynamics on the intact bridge instantaneous frequency 

ridge

This section investigates the VIDF due to the primary suspension stage of the dual sus-
pension vehicle model displayed in Fig. 1. In this figure, also the common frequency 
range of the car body and the bogie system found in the literature are presented. As 
mentioned previously, the car-body bouncing frequency for dual suspension vehicles 
and the bridge bending frequency are well-separated, thus, resonance will not occur. 

Fig. 6 DIDF versus car-bridge frequency ratio. Blue markers correspond with k1, red with k9, while the size of 
the markers represents the mass ratio: m1 (smallest marker size), m3, m5, m7, and m9 (largest marker size)
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However, the bogie bouncing frequency overlaps with the bridge frequency range and 
here resonance can occur.

For the dual suspension vehicle model, the car dynamics contribute to the vehicle-
bridge dynamic interaction through the bogie. Through the current study, the fre-
quency ratio is the benchmark to compare the VBI systems with different vehicle 
models i.e. different super-systems. For the single suspension vehicle model the car 
and for the dual suspension vehicle model the combination of the bogie and the car 
dynamics serve as the super-system. Therefore, for the dual suspension vehicle model, 
the influence of the primary suspension is investigated by keeping the car mass and 
stiffness constant and changing the bogie properties. Also, the influence of the sec-
ondary suspension is explored by keeping the bogie properties constant and changing 
the car properties.

The influence of the primary suspension is presented here where the car mass (40 
tons) and the car stiffness (0.91 Mn/m) are constant and the bogie mass and the bogie 
stiffness are tuned such that the frequency ratio ranges from 0.6-1.5. The bogie stiff-
ness variation range is 1.268-3.96 MN/m and the bogie mass variation range is 6,117-
13,677 kg. Each range is again divided into 9 steps, yielding a total of 9× 9 = 81 VBI 
systems. Note that the car bouncing frequency is smaller than 1  Hz and it always 
appears as the first mode, which corresponds with the actual situation in passenger 
trains to ensure passenger comfort during the ride.

A step-wise analysis, similar to the one presented in Section  3 is done first. The 
results are shown in Fig. 7, which displays the bridge and the bogie resonances in blue 
and red respectively for a fixed bogie mass and all bogie stiffnesses k1 to k9, covering 
the frequency ratio from 0.78 (top left subplot) to 1.18 (bottom right subplot).

Fig. 7 The bridge (blue marker) and the vehicle (red marker) frequency variation during a dual suspension 
vehicle passage for a constant bogie mass and nine different bogie stiffness values k1-k9. The bridge’s 
fundamental frequency is displayed as a dashed black line. The light blue area corresponds to the VIDF
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The top left corner plot of Fig. 2 and the bottom right corner plot of Fig. 7, show two 
VBI systems having similar frequency ratios (around 1.18). It can be seen that the single 
suspension vehicle in comparison with the dual suspension vehicle model shows more 
dynamic interaction which yields a higher VIDF, which is visualized in both graphs by 
the light blue area enclosed by the blue curve and the black dashed line.

The VIDF as a function of the frequency ratio for all 81 VBI systems is presented in 
Fig. 8. The different colors refer to the different bogie stiffness cases k1 to k9, while the 
size of the markers refers to the bogie-bridge mass ratio cases m1 (small) to m9 (large). 
The pattern for the dual suspension vehicle model is similar to the pattern observed 
for the single suspension vehicle model (see Fig. 4). The maximum VIDF occurs when 
approaching a frequency ratio of one near resonance conditions, while the VIDF drops 
when moving away from a frequency ratio of unity. In out-of-phase motion regimes 
when the system is away from resonance, the VIDF tends to zero, whereas for in-phase 
regimes the VIDF tends to 0.4 far from resonance. This means that even for passenger 
trains with a double-stage suspension when the frequency ratio is larger than unity, 
the vehicle dynamics affect the bridge’s instantaneous frequency. At resonance, VIDF 
reaches the maximum values which are lower than the maxima observed in Fig.  4 of 
the VIDF at resonance of the single suspension vehicle model. Although the mass of the 
entire system is (nearly) the same for the single suspension and dual suspension systems, 
the car body has a more limited contribution to the change of the instantaneous fre-
quencies, and hence the VIDF, compared to the bogie. Effectively, the motion of the car 
body is largely isolated from the bridge and bogie motion due to the low stiffness of the 
secondary suspension.

Another set of 81 (9× 9) VBI systems is analyzed to further support the finding that the 
dual suspension system has a lower influence on the VIDF compared to the single sus-
pension system. The objective is now to investigate the impact of car mass and car stiff-
ness on the bridge frequency rather than the bogie mass and bogie stiffness. The bogie 
mass (9580 kg) and the bogie stiffness (1.268  MN/m) are considered constant. The vari-
ation in car dynamics is examined for the bogie-bridge frequency ratio ranging from 0.8 
to 1.4 by varying the car stiffness ranges in 9 steps from 0.9 to 3.6 MN/m, while the car 

Fig. 8 VIDF versus bogie-bridge frequency ratio. Each color corresponds to the primary stiffness (k1 to k9), 
while the size of the marker represents bogie mass (m1: small; m9: large). The solid markers show the case k5, 
m1-m9
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mass varies in 9 steps between 40 and 80 tons. The VIDF values versus the frequency 
ratio, resulting from these analyses, are presented in Fig. 9.

The blue markers in Fig. 9, corresponding with the lowest secondary suspension stiff-
ness and covering the full range of car body mass variation, all nearly coincided and 
result in the same VIDF value. This indicates that the car body mass has a very limited 
influence on the VIDF. The red markers, corresponding with the highest secondary sus-
pension stiffness, show a larger variation in VIDF, but this is still a low amount of vari-
ation compared to the variation observed in Fig. 8. In addition, the maximum value for 
the VIDF near resonance is also lower than in case the bogie mass and stiffness vary. 
Additionally, Fig. 9 reveals that the variation in car body mass has a marginal effect on 
the VIDF for systems operating away from resonance conditions.

4.2  The influence of the vehicle dynamics on the damaged bridge instantaneous 

frequency

Based on the previous analysis, it can be concluded that the bogie dynamics play a cru-
cial role in the vehicle-bridge dynamic interaction for passenger trains. Furthermore, it 
was observed that vehicles operating in the in-phase regime (frequency ratio > 1) amplify 
the VIDF more than in the out-of-phase regime (frequency ratio < 1). In this section, 
only the influence of the bogie dynamics on the DIDF for the dual suspension vehicle 
models in the in-phase regime is investigated. The vehicle model is configured with a 
constant bogie stiffness of 3.96 MN/m (k9) and a variation of the bogie mass between 
6,117-13,677 kg. Only 5 steps (m1, m3, m5, m7, and m9) are used to limit the compu-
tational time. Figure  10 shows the corresponding DIDF. A similar pattern as in Fig.  6 
can be observed in Fig.  10. The DIDF value drops when moving away from the reso-
nance condition and seems to converge to approximately 0.1. The difference between the 
single-suspension and dual-suspension systems reduces with increasing frequency ratio, 
but close to resonance, the damage-induced variation in the instantaneous frequency is 
significantly larger for the single-suspension system. This observation is in line with the 
earlier observation that the change of the VIDF is also lower for the dual-suspension sys-
tems compared to that of the single-suspension systems.

Fig. 9 VIDF versus bogie-bridge frequency ratio. Each color corresponds to the secondary stiffness (k1 to k9), 
while the size of the marker represents car mass (m1: small; m9: large)
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5  Discussion
The dynamic properties of the single-suspension vehicle model cannot be directly com-
pared to those of the dual-suspension vehicle model. However, the frequency ratio 
between the super system (the vehicle) and the sub-system (the bridge) serves as a cri-
terion for representing and comparing the vehicle-bridge dynamic interaction. Figure 11 
provides a concise summary of the findings presented in Figs. 6 and 10 illustrating the 
DIDF for both the single suspension and dual suspension vehicle models. The figure spe-
cifically focuses on the in-phase regime for which the frequency ratio ranges from 1.2 

Fig. 10 DIDF versus bogie-bridge frequency ratio. Results of the highest stiffness case (k9) are shown for 
mass ratios m1 (smallest marker size), m3, m5, m7, and m9 (largest marker size)

Fig. 11 The DIDF of the single suspension and the dual suspension vehicle models for frequency ratios of 1.2 
and 1.5
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to 1.5. In Fig.  11 it is evident that as the vehicle approaches the resonance condition 
the DIDF increases for both vehicle models. The figure also clearly demonstrates a sig-
nificant difference in DIDF between the single-suspension vehicle model representing 
freight trains or single locomotives and the dual-suspension vehicle model representing 
passenger trains. At a frequency ratio of 1.2, Fig. 11 displays that the DIDF of the dual 
suspension vehicle is approximately 0.18 while, this value for the single suspension vehi-
cle is approximately 0.6 which is roughly three times larger. Note that in both cases the 
total mass of the vehicle is the same.

This discrepancy in DIDF values can be attributed to the distinct characteristics of 
the suspension systems employed in each vehicle model. Compared to dual-suspension 
vehicles, the single-suspension vehicle exhibits a higher impact on the bridge dynamics 
which translates into a larger change of the bridge’s instantaneous frequency when dam-
age is present. This enhanced sensitivity enables the detection of smaller deviations in 
the bridge’s frequency response, thereby facilitating the identification of potential dam-
age in an earlier stage. These findings serve as guidelines for the design of bridge health 
monitoring systems, combined with a dedicated approach, which for example involves 
the deployment of dedicated vehicles designed specifically for the purpose of structural 
assessment.

6  Conclusion
The dynamic interaction between a vehicle and a bridge is numerically investigated for 
two vehicle models: a single-suspension and a dual-suspension vehicle. The instantane-
ous frequencies of the vehicle-bridge interaction (VBI) models for an intact and dam-
aged bridge are extracted by performing a series of step-wise modal analyses and a series 
of transient response analyses. The Vehicle-Induced Delta Frequency (VIDF) was pro-
posed earlier to quantify the influence of the vehicle dynamics on the response of the 
intact bridge. The Damage-Induced Delta Frequency (DIDF) was proposed as a dam-
age-sensitive feature to quantify the influence of vehicle dynamics on damage detection. 
The investigation of the Vehicle-Bridge Interaction (VBI) system response, conducted 
near resonance conditions, focused on a single-span simply supported bridge in the con-
text of low-speed train operations. From this analysis, the following conclusions can be 
drawn:

• To ensure accurate and reliable bridge health monitoring and damage detection, 
it is crucial to select suitable train types. Not all types of trains possess the desired 
dynamic characteristics for effective bridge health monitoring.

• Trains with single suspension systems cause more pronounced changes in the 
bridge’s frequency response than dual suspension trains, specifically the Vehicle-
Induced Delta Frequency (VIDF) and Damage-Induced Delta Frequency (DIDF). 
This phenomenon can be attributed to the concept of interacting mass. In single 
suspension systems, the entire mass of the train, including the car body, interacts 
directly with the bridge. In contrast, dual suspension systems decouple the car body 
from the bridge, leading to a reduction in the mass interaction between the train and 
the bridge.
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• In the case of dual-suspension vehicles, the outcomes demonstrate that the influence 
of the vehicle mass on the bridge frequency is negligible compared to the mass of the 
bogie. This observation aligns with the intended role of the secondary suspension 
system, which is primarily focused on enhancing ride comfort by effectively decou-
pling the car body from the undesired vibrations of the subsystems. Hence, when the 
objective is to analyze the impact of vehicle dynamics on the bridge’s instantaneous 
frequency (VIDF) for dual-suspension vehicles, it is essential to focus on the charac-
teristics and properties of the bogie rather than the car mass.

• Both vehicle models experience resonance, which magnifies the dynamic response 
to damage. This phenomenon highlights the importance of considering resonance 
effects in bridge health monitoring strategies for both single-suspension and dual-
suspension vehicles.
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