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Abstract 

To avoid expert inspection, this study develops a decision‑making system for large‑
span bridge inspection intervals based on dynamic fuzzy neural networks (DFNN), 
which can find knowledge from existing inspection data. A sliding window is intro‑
duced to enable the system to learn incrementally so that the system can update 
along with the bridge degradation. Tsing Ma Bridge is adopted as a prototype 
bridge while its rating system established based on the fuzzy‑analytic hierarchical 
process (Fuzzy‑AHP) method is employed to generate training and testing samples. 
The capability of the system in finding the relationship between the rating indexes 
and the rating scores as well as renewing itself with the bridge degradation is then 
verified. And the influence of the length of the window is investigated. The research 
shows that the method can make accurate decisions for bridge inspection intervals 
after being trained by existing data.

Keywords: Bridge inspection, Dynamic fuzzy neural network, Sliding window, 
Incremental learning

1 Introduction
Deterioration accumulation is inevitable during bridges’ service life due to harsh envi-
ronments including overloading, earthquakes, temperature, corrosion and so on. To 
ensure bridges’ serviceability, durability, and safety, inspecting in-service bridges in time 
is essential. After the inspection, appropriate maintenance measures can be adopted 
to ensure the normal operation of the bridges, which lays foundation for the develop-
ment of the society. For arranging inspection work reasonably, the Chinese codes (JTG 
H11-2004, JTG/T H21-2011) suggest initial inspection, daily inspection, routine inspec-
tion, periodic inspection, and special inspection for bridges. Among them, regular and 
periodic inspections rely on visual inspection. Special inspection includes on-site test-
ing, verification, and analysis about the states of the components, and is performed only 
when further diagnosis about the causes of the damages, damage degrees is needed, 
or when bridges are catastrophically damaged. In the United States, there are different 
types of bridge inspections: initial inspection, routine inspection, in-depth inspection, 
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fracture critical inspection, and special inspection (Hearn 2007). According to the codes, 
the decision of the inspection intervals relies more on the engineers’ experience.

To reasonably determine the interval between two adjacent inspections, evaluating 
the current states of bridges is necessary. The analytic hierarchy process (AHP) method 
is the basis of the Chinese specifications (JTG H11-2004, JTG/T H21-2011) and many 
bridge evaluation systems (Huang et al. 2007; Li et al. 2016). According to the method, 
inspectors need to score the severity of each bridge disease based on visual or instru-
ment detection results, and then weight the scores to evaluate the states of the bridge. 
In the process, the weights for each component and disease need to be obtained through 
experts’ investigation. But as the investigation is time consuming, the weights are diffi-
cult to be adjusted in time to reflect the changes in the importance of the indexes, which 
caused by bridge degradation (Xu et al. 2018). At the same time, the inspector’s subjec-
tive description for the degree of the damages will lead to uncertainty in the evaluation 
results (Anoop et al. 2012; Campbell et al. 2021).

In order to overcome the above difficulties, Sasmal and Ramanjaneyulu (2008), Liang 
et al. (2001) and Liu et al. (2017) introduced fuzzy theory to deal with fuzzy informa-
tion such as subjective judgment from inspectors. Lan (Lan and Shi 2001) and Xu et al. 
(2018) introduced the variable weight theory to adjust the weights for the indexes. Wang 
et al. (2008) and Yang et al. (2019) used the evidence theory to fuse multi-source infor-
mation to evaluate bridges condition. Cattan et al. (1997) used artificial neural networks 
(ANN) to map bridge geometric and structural parameters to structural states. Kushide 
et al. (1997) developed an expert system for concrete bridge inspection via ANN. Li et al. 
(2011) constructed a bridge component importance and vulnerability assessment system 
based on the fuzzy analytic hierarchy process (F-AHP) (Wong 2006). The system con-
siders both the monitoring data from the structural health monitoring (SHM) system 
and the visual inspection results in determining inspection intervals for different com-
ponents of the Tsing Ma Bridge. To solve the uncertainties caused by environmental fac-
tors and subjective evaluation, Xu et al. (2023) proposed a bridge component evaluation 
system based on cloud-analytic hierarchy process (C-AHP) by combining cloud theory 
with AHP. However, the weights of the indexes in the systems proposed in the above 
researches still depend on experts’ investigation.

This paper proposes a decision-making system for long-span bridge inspection inter-
vals based on dynamic fuzzy neural networks (DFNN), which can find the weights of the 
indexes from existing bridge inspection data. Nevertheless, the traditional DFNN learn-
ing algorithm relies on a fixed sample library. To update the sample library according to 
accumulating inspection data, a sliding window is introduced to improve the learning 
algorithm and make the system have incremental learning capability. Finally, the method 
is used to make decisions for the inspection intervals of some components of the Tsing 
Ma Bridge, and the effect of the sliding window length is discussed.

2  DFNN for bridge inspection intervals
2.1  DFNN combining inspection process

It is difficult for inspectors to apply clear quantitative criteria to determine the severity 
of bridge damages, which means that the severity is fuzzy. Zadeh et al. (1996) proposed 
fuzzy theory that quantifies fuzzy concepts using fuzzy sets and affiliation functions to 
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provide a mathematical description for fuzziness. Fuzzy inference system (Takagi and 
Sugeno 1985) is one of the branches of fuzzy theory, which simulates complex systems 
by dividing the input variable space into several fuzzy sets and combining them to estab-
lish fuzzy rules. A fuzzy inference system is essentially an expert system based on fuzzy 
rules, which are expressions of expert experience, and the Takagi-Sugeno-Kang (TSK) 
model is one of the most adopted models to establish the rules. The output of each fuzzy 
rule in the TSK model is a linear combination of the affiliation degrees of the input vari-
ables to different fuzzy sets. Theoretically, a fuzzy inference system with a reasonable 
structure can approximate any continuous or discrete mathematical function with arbi-
trary accuracy.

However, for complex bridge structures, there is no clear basis for choosing the struc-
ture of a fuzzy inference system, which including the selection of the fuzzy sets, affili-
ation functions, and fuzzy rules. The state of a bridge component is influenced by a 
variety of factors, and its evaluation system is a typical multi-input system. Since the 
number of fuzzy rules in traditional fuzzy inference systems increases exponentially with 
the number of input variables, which may cause dimensional catastrophe. To address 
the limitations of traditional fuzzy inference systems and to combine the advantages of 
autonomous learning of neural networks, Wu and Er (2000) proposed DFNN. DFNN 
applies neural networks to fuzzy inference systems so that it can dynamically determine 
the number of fuzzy rules, and intelligently adjust the system structure according to 
its predicted error for the new samples. At the same time, the fuzzy theory gives the 
weights and bias of neural networks practical meaning. DFNN can make full use of the 
advantages of fuzzy inference systems and neural networks, which is suitable for intel-
ligent evaluation of the states of complex bridge components.

In bridge operation, inspection data including rating scores for the diseases, com-
prehensive scores for the components, and inspection intervals are accumulated dur-
ing daily inspection works. DFNN can find the relationships between the scores and 
the adopted inspection intervals for making inspection decisions when new inspection 
results are inputted, as shown in Fig. 1.

During the initial inspection, the first inspection to be conducted on a bridge as 
the bridge becomes part of the bridge inventory, inspectors need to make a detailed 
assessment of the states of bridge components and make decisions on the interval 
next inspection needs to be conducted. The index scores of each component and the 
corresponding comprehensive scores as well as inspection intervals can form a train-
ing set, based on which the network can learn and find the weights of each index. 
After that, the trained network can make decisions on the next inspection intervals 
according to the scores of the component indexes after an inspection, which avoids 

Fig. 1 Decision‑making flow for bridge inspection intervals based on inspection process
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the experts’ investigation needed to determine the weights. With the accumulated 
deteriorations, the relative importance of different damages may change. To avoid 
the deviation of the decisions, it is necessary to update the weights in time. In actual 
bridge inspection works, some in-depth inspections are required when there are diffi-
culties in determining the causes and extents of some damages, which contains more 
tests and analyses about the state of the structure rather than only visual inspec-
tion included in routine inspections. The in-depth inspection results can reflect the 
changes in the relative importance of damage indexes. Therefore, the network can 
update its weights incrementally by learning from the in-depth inspection data, thus 
ensuring the rationality of its decisions.

The structure of DFNN is shown in Fig. 2, which includes the detection index layer, 
fuzzification layer, activation weight layer, normalization layer, TSK fuzzy rule layer, 
comprehensive score layer, and inspection interval decision layer. The detection index 
layer receives the index scores (I), the comprehensive score layer and the inspection 
interval decision layer give the comprehensive scores (R) and the inspection intervals (I).

The fuzzification layer uses the Gaussian membership function (see Eq. 1) to calcu-
late the affiliation degrees of the indexes.

where uij is the jth Gaussian membership function for index Ii ; cij is the center of the 
membership function; σj is the width of the function; u is the number of affiliation func-
tions, which is the same as the number of TSK fuzzy rules in the system.

The activation weight layer weights the affiliation degrees to determine the activa-
tion degree for each fuzzy rule. The fuzzification layer and the activation weight layer 
can be replaced by radial basis function (RBF) neurons shown in Eq. 2. The adjust-
ment of the system can be realized by adding or deleting the RBF neurons and adjust-
ing their parameters.

(1)uij(Ii) = exp −
(Ii − cij)

2

σ 2
j

, i = 1, 2, · · · , n; j = 1, 2, · · · ,u

Fig. 2 Architecture of the DFNN combining inspection processes
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The normalization layer normalizes the activation degrees for every fuzzy rule, and the 
jth normalized value Nj can be expressed as:

Each TSK fuzzy rule in the fuzzy rule layer can be expressed as a weighted linear com-
bination of the detection indexes:

where aj , bj , cj , ..., zj are the parameters in the jth TSK fuzzy rule, which is obtained via 
the least square method.

2.2  Learning approach for DFNN with a sliding window

The parameters of DFNN, such as cij , σj and u , need to be obtained by autonomous 
learning. In order to adjust these parameters in time to reflect the changes in the weights 
of the indexes, the network needs to be updated according to the new in-depth inspec-
tion data, that is, the network needs to have incremental learning ability. The traditional 
learning algorithm adopts the idea of hierarchical learning, that is, the system error limit 
( ke ) and the admissible boundary ( kd ) gradually decrease with the increase of learning 
times. To achieve hierarchical learning, the training set size needs to be fixed. In the 
neuron pruning process, the traditional learning algorithm determines the importance 
of each neuron by calculating the error decline rate ( ηi ) of each neuron for all train-
ing samples, and removes the neurons whose error decline rate is less than a specified 
threshold ( kerr ). In short, the learning algorithm not only fixes the size of the training set 
but also regards all the training samples with the same importance in adjusting the net-
work, which hinders the realization of incremental learning.

In order to enable DFNN to learn incrementally, this paper introduces a sliding win-
dow and abandons the hierarchical learning in the parameter adjustment and neuron 
pruning process. That is, ke and kd are set as fixed values, and only the samples within a 
window with a fixed length are considered in calculating the error reduction rate (ERR) 
( ηi ) for each neuron. The learning process for DFNN with a sliding window is shown in 
Fig. 3.

After new training samples are obtained by in-depth inspections, the sliding window 
will move forward to eliminate the samples from previous inspections. The introduc-
tion of the sliding window enables DFNN to perform incremental learning based on the 
gradually accumulated data. This feature provides a basis for the system to extract index 
weights from existing inspection data and to update the weights based on the accumu-
lated data. In addition, the wind driven optimization (WDO) algorithm (Bayraktar 2010) 
is used to optimize the hyper-parameters of the network in the following analyses.

(2)φj = exp
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(Ii − cij)
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σ 2
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, j = 1, 2, · · · ,u

(3)
Nj =

φj
u
∑

k=1

φk

, j = 1, 2, · · · ,u

(4)fj = aj + bjI1 + cjI2 + ...+ zjIn, j = 1, 2, · · · ,u
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3  Inspection intervals decision for Tsing Ma Bridge
The Tsing Ma Bridge is selected as a protype bridge. The bridge is a suspension bridge 
with a main span of 1377m. To monitor its state, about 350 sensors were installed. 
These monitoring equipment, communication equipment and data center constitute a 
SHM system and provide a large amount of measured data for the bridge operation and 
inspection. The main span arrangement of the bridge is shown in Fig. 4.

Based on AHP, Li et al. (2011) established a bridge evaluation system that integrates 
monitoring data and visual inspection results. Its architecture is shown in Fig.  5, in 
which C1 is the damage state index, which refers to the degree of the damage that is 

Fig. 3 Learning approach for DFNN with a sliding window

Fig. 4 Configuration of Tsing Ma bridge (Li et al. 2011)
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known but not serious enough to need immediate repair or cannot be repaired due to 
technical reasons. C2 is the strength utilization coefficient, that is, the ratio of the load 
effect on the component to its capacity. C3 is the residual fatigue life of the component. 
C4 is the substitutability of the force transmission path, which represents the possibility 
that the load borne by the component is shared by other components when the compo-
nent is damaged. C5 is the bearing capacity of the component under extreme conditions. 
V1 represents very slow damage, such as concrete carbonation, steel corrosion, etc. V2 
represents very rapid damage, such as vehicle and ship impact. V3 represents relatively 
slow damage, such as deformation caused by temperature changes. VA , VB and VC rep-
resent the exposure degree of the component, the possibility of the component’s dam-
age being found in inspection, and the influence of the component damage on structural 
integrity, respectively. The vulnerability index is calculated by its sub-index, as shown in 
Eq. 5.

Combined with the actual component conditions and inspection intervals of the Tsing 
Ma Bridge, Li et al. (2011) established the relationship between the component compre-
hensive score and the inspection interval, as shown in Table 1.

Considering that the increasement in the number of neurons will complicate the net-
work and the conversion between the vulnerability index and its subindexes does not 
involve the weights to be adjusted, only the importance index and vulnerability index 
(index layer 1 in Fig.  5) are considered as the inputs to the network. Based on the 

(5)Vi =
3
√

ViA × ViB × ViC

Fig. 5 Index system for components rating (Li et al. 2011)

Table 1 Inspection intervals for different comprehensive scores (Li et al. 2011)

Degree Comprehensive score (R) Inspection 
interval (I/
year)

I [75,100] 0.5

II [57.5,75) 1

III [25,57.5) 2

IV [0,25) 6
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literature (Li et al. 2011) to simulate the evaluation process, the comprehensive rating 
scores and corresponding inspection intervals for different components were generated 
and used as training samples for the network. The weights of each index for the simula-
tion are shown in Table 2.

3.1  DFNN parameters and inspection intervals decision

In the initialization phase, the width of the first RBF neuron is set as w0 = 25 ; the 
overlap coefficient, between the new neuron and existing neurons, is set as k = 2.2 ; 
the RBF neuron width amplification coefficient is set as kw = 2.2 ; the system error 
limitation is set as ke = 0.1 ; the system admissible boundary is set as kd = 20 ; and 
the neuron pruning threshold is set as kerr = 0.05 . The network hyper-parameters 
optimized by WDO are: w0 = 19.37 , k = 2.94 , kw = 2.49 , ke = 0.11 , kd = 28.78 , 
kerr = 0.06 . The network is trained using the initial and optimized hyper-parameters, 
respectively, and the sliding window length is set to 100. To determine the number of 
samples contained in the training set and the test set, several training processes are 
conducted, and the numbers that can show the differences between the system with 
the initial parameters and that with the optimized parameters (see Figs. 6 and 7), 200 
samples for the training set and 100 samples for the test set, are adopted in the fol-
lowing analyses.

The number of TSK fuzzy rules ( fi in Fig. 2), which is the same as the number of 
RBF neurons, in the training process and the prediction error are shown in Fig. 6, 
and the test results are shown in Fig. 7. The prediction error refers to the absolute 
distance between the decision value from the network and the target value of the 
next sample that belongs to the training set but has not been inputted into the net-
work, and the test result refers to the relative error between the decision value and 
the target value for the test samples. From Fig. 6, it can be found that the number 
of the fuzzy rules in the network with the initial parameters rises continuously with 
the accumulating training samples. On the contrary, the number of the fuzzy rules 
is stable after 25 training samples are inputted when the optimized parameters are 
adopted. The prediction error of the network using the optimized parameters is 
smaller than that of the network using the initial parameters, and the relative error 
of the former is also smaller. The both indicate that the optimized parameters can 

Table 2 Index weights for the bridge rating system (Li et al. 2011) (Group 1)

Rating Weight

Criticality rating (RC) 0.5

    C1 0.1237

    C2 0.3945

    C3 0.2343

    C4 0.1238

    C5 0.1237

Vulnerability rating(RV) 0.5

    V1 0.5

    V2 0.25

    V3 0.25
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effectively improve the learning efficiency and performance of the network so that 
they will be adopted in the following analyses.

Table 3 compares the comprehensive scores (R) and the inspection intervals (I) of 
some components of the Tsing Ma Bridge obtained from the network and the lit-
erature (Li et al. 2011). The comparison results show that for the components with 
the same index scores, the comprehensive scores from the two methods are slightly 
different. However, since the inspection interval decision bases on the section the 
comprehensive score locates in, there is a tolerance for the scores, so the decision 
results are the same. Therefore, the network can extract the weights from the exist-
ing inspection data and make accurate decisions on the inspection intervals.

Fig. 6 Training process monitoring before and after the hyperparameters’ optimization
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3.2  Incremental learning of the network

After the network learns the initial inspection data, it needs to be updated accord-
ing to the gradually accumulated inspection data. This section simulates the accumu-
lated inspection data through changing the weights in the AHP method. The weights 
for the first 100 training samples are shown in Table 2, and the weights for the last 
100 training samples and 100 test samples are shown in Table 4. The sliding window 
length is set to 50.

The number of fuzzy rules, the prediction error and the root mean square of the pre-
diction errors for the samples within the window during the training process are shown 
in Fig. 8 (the root mean square error during the windowless training process refers to 
the root mean square error of all the training samples), and the test results are shown in 
Fig. 9.

Before the training samples based on the new weights (see Table  4) appear, the 
trend of each monitored variable in the training processes with and without the 

Fig. 7 Test results before and after the hyper‑parameters’ optimization



Page 11 of 17Zhang et al. Advances in Bridge Engineering            (2023) 4:16  

Ta
bl

e 
3 

Co
m

pr
eh

en
si

ve
 s

co
re

s 
(R

) a
nd

 in
sp

ec
tio

n 
in

te
rv

al
s 

(I/
ye

ar
) f

or
 s

om
e 

co
m

po
ne

nt
s

El
em

en
t

Co
m

po
ne

nt
C
1

C
2

C
3

C
4

C
5

V
1

V
1

V
3

Li
 e

t a
l. 

(2
01

1)
D

FN
N

R
I

R
I

Su
sp

en
si

on
 c

ab
le

s
M

ai
n 

ca
bl

es
0

10
0

0
10

0
10

0
10

0
10

0
0

69
.5

9
2

69
.6

3
2

St
ra

nd
 s

ho
es

0
67

0
67

10
0

79
.4

79
.4

0
53

.3
2

2
53

.3
3

2

Sh
oe

 a
nc

ho
r r

od
s

0
67

0
67

10
0

79
.4

79
.4

0
53

.3
2

2
53

.3
3

2

A
nc

ho
r b

ol
ts

0
67

0
67

10
0

79
.4

79
.4

0
53

.3
2

2
53

.3
3

2

Ca
bl

e 
cl

am
ps

 a
nd

 b
an

ds
0

67
0

67
33

10
0

63
0

52
.2

8
2

52
.2

8
2

Su
sp

en
de

rs
H

an
ge

rs
0

10
0

67
67

33
79

.4
79

.4
0

63
.5

3
2

63
.5

3
2

H
an

ge
r c

on
ne

ct
io

ns
: s

tiff
en

er
s

0
10

0
0

67
33

79
.4

79
.4

0
55

.6
9

1
55

.6
9

1

H
an

ge
r c

on
ne

ct
io

ns
: b

ea
rin

g 
pl

at
es

0
10

0
0

67
33

79
.4

79
.4

0
55

.6
9

1
55

.6
9

1

To
w

er
s

Le
gs

0
67

0
10

0
67

10
0

0
0

48
.5

4
2

48
.5

4
2

Po
rt

al
s

0
67

0
10

0
67

10
0

0
0

48
.5

4
2

48
.5

4
2

Sa
dd

le
s

0
67

0
10

0
67

10
0

0
0

48
.5

4
2

48
.5

4
2

A
nc

ho
ra

ge
s

C
ha

m
be

rs
0

0
0

10
0

10
0

10
0

0
0

37
.3

7
2

37
.3

5
2

Pr
es

tr
es

se
d 

an
ch

or
s

0
10

0
0

67
67

79
.4

0
0

47
.8

6
2

47
.8

6
2

Sa
dd

le
s

0
67

0
10

0
67

79
.4

0
0

43
.3

9
2

43
.3

9
2

Pi
er

s
Le

gs
0

0
0

10
0

10
0

10
0

0
0

37
.3

7
2

37
.3

5
2

C
ro

ss
‑b

ea
m

s
0

67
0

10
0

67
10

0
0

0
48

.5
4

2
48

.5
4

2



Page 12 of 17Zhang et al. Advances in Bridge Engineering            (2023) 4:16 

sliding window is basically the same. After that, all of the monitored variables begin 
to be adjusted, and the number of fuzzy rules and the prediction error increase at 
the same time. However, in the process of windowless training, because of the influ-
ence of the training samples based on the original weights (see Table 2), the predic-
tion error for the new sample and the root mean square error for the trained samples 
will not decrease with the accumulation of new samples. In the process of windowed 
training, when all the samples in the window are updated, the network can eliminate 
the influence of the samples based on the original weights in time. The number of 
fuzzy rules will be stable and the prediction error as well as the root mean square 
error will fall back to near zero. The test results of the network using the windowed 
learning method are also significantly better than that using the windowless learning 
method.

When the sliding window length is changed, the network’s training process and the 
average relative error for the test samples are shown in Figs. 10 and 11. The average 
relative error reflects the error between the decisions and the targets of the test sam-
ples (test sample number is 100). It can be seen from the graphs that when the sliding 
window is too short (less than 50), the number of fuzzy rules continues to grow, and 
the prediction errors for new samples fluctuate significantly, but the root mean square 
error for the samples in the window fluctuates small. The reasons can be summarized 
as: when the length of the sliding window is too short, the samples in the window is 
too little to provide sufficient knowledge, so that the network can only make accurate 
predictions for the learned samples. When the length of the sliding window is suitable 
(between 50 and 100), the number of fuzzy rules, the prediction error, and the root 
mean square error tend to be stable after all the samples in the window are updated, 
which indicates that the network has been update. During this stage, the average rela-
tive error of the test samples closes to zero and the increase of the sliding window 
length has no obvious effect on the test results. While the sliding window length is too 
large, due to the lack of samples based on the new weights, the network adjustment 
still needs to consider the two sample groups at the same time, so the average relative 
error for the test samples based on the new weights is large. At this time, more train-
ing samples based on new weights are needed to update the network.

Table 4 Varied weights for the bridge rating system based on AHP (Group 2)

Rating Weight

Criticality rating (RC) 0.5

    C1 0.0985

    C2 0.4304

    C3 0.2741

    C4 0.0985

    C5 0.0985

Vulnerability rating (RV) 0.5

    V1 0.6

    V2 0.2

    V3 0.2
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Fig. 8 Training process monitoring of the network with and without the sliding window
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4  Conclusions
In this paper, a bridge inspection interval decision-making system is established 
based on DFNN, and a sliding window is introduced to enable the system to learn 
incrementally. The main conclusions are listed as follows:

1 DFNN can extract the weights of the indexes from the existing inspection data, and 
then evaluate the condition of bridge components and make inspection interval deci-
sions according to the scores of the indexes.

2 The introduction of the sliding window enables the DFNN to learn incrementally. 
When the samples with different weights are provided, the test error of the network 
using the windowless learning algorithm ups to 38%, while that of the network using 
the windowed learning algorithm is only 0.72%.

Fig. 9 Test results of the network with and without the sliding window
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Fig. 10 Training processes with various lengths of the sliding window
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3 When the length of the sliding window is too small, the samples in the window are 
not representative enough so that the performance of the network is poor. At this 
time, increasing the length of the sliding window can effectively improve the net-
work’s performance. However, the longer sliding window length means that more 
training samples are needed, and the effect of increasing the sliding window length 
on the network’s performance is gradually weakened. In the inspection interval deci-
sion for the Tsing Ma Bridge, the ideal sliding window length is 50.
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