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1  Introduction
Truss bridges are commonplace in civil infrastructure because of noticeable advan-
tages, including convenient construction, economy, and familiarity. However, con-
templating the light weight of truss systems, their performance may be controlled by 
wind load. The minimum requirements of wind load for bridge design have evolved 
over the last decades. A base wind speed of 44.7 m/s or 160 km/h is frequently 
adopted in the community and practitioners also refer to refined speeds at certain 
regions as per a published standard. The ASCE 7 Standard is considered one of the 
most comprehensive resources encompassing wind-related information (ASCE 2016). 
From a historical perspective, technical contents that originated from the ANSI A58.1 
guideline of the American National Standards Institute (ANSI 1982) were transferred 
to the American Society of Civil Engineers (ASCE) in 1990 and revised to be part 
of an early version of ASCE 7 (ASCE 1990). Since then, several changes were made 
with wind speeds, factors, and other details. In 2010, ASCE 7 accommodated the 
principle of performance-based engineering (ASCE 2010). Contrary to previous ver-
sions built upon uniform wind hazards, a wind map was provided in compliance with 
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the probability of failure; specifically, Risk Categories I to IV were defined at return 
periods of 300 to 1700 years (ASCE 2010), which were updated with 3000 years for 
Category IV in 2016 (ASCE 2016). On the design of bridge structures, the Ameri-
can Association of State Highway and Transportation Officials (AASHTO) Load and 
Resistance Factor Design (LRFD) Bridge Design Specifications (BDS) embraced the 
wind map of ASCE 7 alongside the fastest-mile wind speed (AASHTO 2017); there-
after, a three-second gust wind speed was implemented. The fastest-mile wind speed 
indicates the shortest time of passing a point by a-mile-long wind (Wassef and Ragget 
2014), while the three-second gust wind speed means the peak speed measured for an 
hour with a three-second gust duration (Lombardo 2021).

Instead of costly wind tunnel tests, numerical simulations are conducted on many 
occasions (Zhang et al. 2021). The concept of computational fluid dynamics is prevalent 
in the area of finite element modeling to examine the effects of wind load on the behav-
ior of highway bridges (Han et al. 2018). The advancement of information technology has 
brought the era of new predictive modeling methodology, which is known as machine 
learning. The application of machine learning is enormously broad from agriculture to 
astronomic physics (Meher and Panda 2021; Meshram et al. 2021), and a recent state-
of-the-art review articulates how this emerging technology is used for structural engi-
neering (Thai 2022). Machine learning is classified into supervised, semi-supervised, and 
unsupervised groups, depending upon the type of supplied data for input and output 
(Wu and Snaiki 2022). Among many, reduced-order machine learning receives attention 
owing to its simplified formulation, rapidity, and reliability (Chen et al. 2021), and ran-
dom forest is a representative branch established on the ensemble classification of multi-
ple decision trees (Sun and Zhou 2018; Karpatne et al. 2023). In the context of accuracy 
control, predefined classifiers are processed and the agreement is adjusted between clas-
sified and unclassified labels (Fawagreh et al. 2014). As is the case for machine learning, 
the potential of random forest is remarkable in numerous disciplines (e.g., biology, bio-
informatics, medicine, neuroscience, and natural disaster assessments, Boulesteix et al. 
2012; Terranova et al. 2021; Zhu and Zhang 2021).

A plethora of endeavors were expended to apply random forest to solve assorted struc-
tural engineering problems. Eidetic interpretations, accuracy, and stable solutions are 
the benefits of this modeling approach (Li et  al. 2021a). Pham et  al. (2020) predicted 
the ultimate load of piles with a variety of input parameters (e.g., the length and diam-
eter of piles and ground elevations). A random forest model was developed and trained 
using more than 2000 test data. The inferred ultimate loads showed better agreement 
to measured values in comparison with those of empirical equations. Li et al. (2021b) 
utilized a random forest algorithm for the examination of building responses under wind 
loading. Predicted data assisted in comprehending the complex response of the build-
ing structure. Mohammed and Ismail (2021) calculated the shear strength of concrete 
beams with the aid of random forest. A total of 349 specimens were employed to train 
the machine learning model. The coefficients of determination between the predicted 
and observed data were reasonably satisfactory at R2 = 0.674 to 0.949. Notwithstand-
ing these promising outcomes, the majority of existing evaluations were concerned with 
laboratory beams or numerical analysis; hence, the applicability of random forest to full-
scale structures should be appraised. In this paper, the behavior of a constructed truss 
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bridge subjected to wind loadings is investigated through multidirectional approaches 
that consist of a field test, finite element modeling, and random forest.

2 � Experimental program
2.1 � Field testing

Information on field testing is excerpted from a previously conducted experimental 
program and further details are available elsewhere (Rutz 2004). A steel truss bridge, 
the Four Mile Bridge in Steamboat Springs, Colorado, USA, was instrumented and its 
responses were recorded under wind load (Fig.  1(a)). The 102-year-old bridge system, 
36 m in length, 5 m in width, and 6 m in height, was composed of steel channels, eye 
bars, and hot-rolled cables for the chords and lateral bracings, as depicted in Fig. 1(b). 
Each chord was constituted with two eye bars possessing an elastic modulus of 200 GPa. 
The elastic modulus, yield strength, and ultimate strength of the cables were 159 GPa, 
248 MPa, and 400 MPa, respectively. To properly measure wind loading, a plastic sail 
(26 m long by 1.6 m high) was placed on a windward side (Fig. 1(a)). Anemometers were 
positioned at five locations to log variable wind speeds (Fig. 2(a)): the individual locations 
were designated as WS1 to WS5. In addition, eight strain transducers were installed to 
the truss members for the quantification of wind-induced responses (Fig. 2(b)), which 
were recorded at every 0.1 seconds.

2.2 � Wind‑induced force

The dynamic pressure of wind (p) is expressed as.

where ρ is the fluid mass density (ρ = 1.225 kg/m3 for sea-level air at 15 °C, Carta and 
Mentado 2007) and ν is the wind velocity in m/s. As far as a truss system is concerned, 
the pressure in Pascals may be attained from (Fouad and Calvert 2003).

where Cd is the shape-dependent drag coefficient (Cd = 2 and 1.7 for the truss members 
and the sail, respectively, Hoerner 1958). As mentioned earlier, multiple strain transduc-
ers were employed to examine the response of the truss eye bars (Fig. 2(c)). Two bottom 
chords were selected at midspan and two eye bars A and B (Fig.  2(c)) were paired to 
form one chord (Fig. 2(b), where C1 and C2 are visible on the leeward and windward 

(1)p =
1

2
ρv2

(2)p = 0.613Cdv
2

Fig. 1  The Four Mile Bridge in Steamboat Springs, Colorado: a site; b dimensions
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sides, respectively). Using fundamental mechanics, the force of C1 (Ft1) was calculated 
by.

where FA and FB are the forces of the eye bars A and B, respectively; E and A are the 
elastic modulus and the cross-sectional area of the bars, respectively (E = 200 GPa and 
A = 1129 mm2); and εA and εB are the axial strains of the A and B bars, respectively. Con-
sidering the strain reading scheme (ε1 through ε4) given in Fig. 2(c),

Substituting Eqs. 4 and 5 into Eq. 3 yields.

(3)Ft1 = FA + FB = EA(εA + εB)

(4)εA =
(ε1 + ε2)

2

(5)εB =
(ε3 + ε4)

2

Fig. 2  Experimental setup: a locations for measuring wind speed; b monitored members; c calculation of 
wind-induced forces



Page 5 of 15Wang et al. Advances in Bridge Engineering            (2022) 3:20 	

Similarly, the force of C2 (Ft2) can be determined. Shown in Figs.3 (a) and (b) are the 
measured wind speeds and the member strains, respectively.

2.3 � Characterized wind speed

Because the magnitude of wind speed is not deterministic, a two-parameter Weibull dis-
tribution was adopted to characterize the speed. The probability density function (f(v)) 
and the cumulative distribution function (F(v)) of the Weibull distribution are written as 
(Bhattacharya and Bhattacharjee 2010; Ozay and Celiktas 2016).

where k and c are the shape and scale parameters, respectively. For the determination 
of these parameters, an open-source Python library called SciPy was used (Van Rossum 
and Drake 1995). The library is considered a comprehensive Python package specialized 
in solving multiple functions (Virtanen et al. 2020), which calculated the maximum like-
lihood of the wind speeds at a minimum difference between the recorded and calibrated 
values.

3 � Modeling
3.1 � Machine learning

3.1.1 � Random forest

Random forest, a machine learning approach, was adopted to predict the wind-
induced strains of the truss members. The tree-based decision-making algorithm is 
commonly known as Classification and Regression Trees (CART); therefore, both 
classification and regression problems can be solved without the configuration of 
structural members. A classification tree was used for the purpose of this research, 
which was implemented by the program R and associated libraries. A decision tree 

(6)Ft1 = EA
(ε1 + ε2 + ε3 + ε4)

2

(7)f (v) =
k

c

v

c

k−1

e−(
v
c )

k

(8)F(v) = 1− e−(
v
c )

k

Fig. 3  Experimental results: a wind speeds; b wind-induced strains



Page 6 of 15Wang et al. Advances in Bridge Engineering            (2022) 3:20 

model using classifiers is one of the most widely used predictive algorithms with 
popular features that include rapid classification, filtered trivial attributes, optimal 
efficiency, and affordable computational resources (Breiman 2017; Sheppard 2017). 
Figure  4 illustrates the procedural implementation of the random forest method. 
In accordance with a multilayered hidden training method that handled a total of 
500 decision trees, randomly selected wind speeds were branched and correspond-
ing member strains were linked. The experimentally obtained 1104 datasets were 
used to train the model (80% of the entire datasets) until convergence was achieved, 
which was then validated against the remaining 276 datasets.

3.1.2 � Validation

Figure 5 demonstrates the measured and predicted strains of selected members. Most 
residual mean squares were less than 0.6; however, strain 6 of member C2 (Fig.  2(b)) 
revealed a relatively high value of 2.54, which could be attributed to either the uneven 
distribution of on-site wind or the local misalignment of the installed strain transducer.

3.2 � Finite element analysis

A three-dimensional finite element model was developed using Rapid Interactive Struc-
tural Analysis for 3D Structures (RISA3D) to predict the behavior of the bridge under 
wind loading (Fig. 6). Frame elements represented individual truss members. Given that 
actual degrees of freedom at the supports of the historic bridge were unknown, a pos-
sible combination of various boundary conditions was taken into account (Table 1) at 
support locations J1 to J4 (Fig. 1(b)). When computing the axial forces of the C1 and C2 
members (Fig. 2(b)), the applicability of two wind load models was assessed (Table 2).

Fig. 4  Procedural implementation of random forest
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3.2.1 � Uniformly distributed wind pressure

The logged wind speeds at the five locations were converted to corresponding pressures 
by Eq. 2 and their average was applied to the truss model. Additionally, the wind loads 
appertaining to the sail pressures were equally divided into 12 points and applied to the 
truss members at the mid-heights of the members (Fig. 6(a)).

Fig. 5  Validation of random forest: a Strain 2; b Strain 4; c Strain 6; d Strain 8

Fig. 6  Finite element model: a point load; b pressure load in a quadrant
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3.2.2 � Quadrantally distributed wind pressure

An integrated loading scheme was considered in a quadrant, as depicted in Fig. 6(b). The 
mean wind speed taken from Locations 1 to 5 (Fig. 2(a)) was applied to the simplified 
regions of Q1 to Q4 (Fig. 6(b)). Analogous to the uniform wind loading case, 12 point 
loads were applied to the members where the sail was positioned.

4 � Results
4.1 � Wind speed

According to the calibrated Weibull parameters (Table 3), the probability density func-
tions at the five locations where the wind speeds were collected are plotted in Figs. 7(a) 
to (e). Although not shown in Fig.  7, considerable linearity was noticed between the 
ordered wind data and the quantiles of the Weibull distribution, confirming the ade-
quacy of generating the probability curves. When the height of the sampling location 
elevated, the magnitude of the wind speed increased. For example, the mean speed 

Table 1  Boundary conditions of the historic truss bridge

Symbol Support location

J1 and J3 J2 and J4

B1 Fixed Fixed

B2 Fixed Pinned

B3 Pinned Fixed

B4 Fixed Roller

B5 Roller Fixed

B6 Pinned Pinned

B7 Pinned Roller

B8 Roller Pinned

Table 2  Distribution of wind loads

v = wind velocity; p = dynamic pressure of wind; Q1 to Q4 = pressures in a quadrant

Location Uniform distribution Quadrantal distribution

v (m/s) p (Pa) Average p 
(Pa)

Point load 
(kN)

v (m/s) p (Pa) Average p 
(Pa)

Point load (kN)

1 6.04 34.88 36.76 0.11 NA NA NA NA

2 (Q1) 7.43 52.89 6.74 43.32 NA 0.10

3 (Q4) 4.54 19.72 5.29 26.71

4 (Q3) 4.72 21.31 5.38 27.62 NA 0.10

5 (Q2) 7.58 54.98 6.81 44.27

Table 3  Parameters of Weibull distribution for wind speed

WS1 to 5 = location of wind speed measurement

Weibull parameter WS1 WS2 WS3 WS4 WS5

k 4.62 5.84 4.32 3.13 4.91

c 6.61 8.00 4.99 5.26 8.26
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at Locations 2 and 5 was 7.5 m/s, whereas the speed at Locations 3 and 4 was 4.6 m/s. 
The trend of these wind speed variations is in line with archetypal wind distributions 
for structural design (ASCE 2016). The cumulative distribution functions graphed in 
Fig. 7(f ) reaffirm the height-dependent wind speeds and further indicate that the wind 
speed at Location 1 can represent the overall speeds; in other words, the distribution at 
Location 1 was positioned between those at Locations 3 and 4 (lower positions) and at 
Locations 2 and 5 (higher positions). Based on the characterized wind speed distribu-
tions, the speeds at the five locations were predicted to cover occurrence probabilities 
ranging from 20% to 99% (Table 4).

4.2 � Effects of boundary conditions

Shown in Fig. 8 are the forces of Members C1 and C2 (Ft1 and Ft2, respectively) when 
subjected to the several boundary conditions (Table 1). There were inappreciable differ-
ences between the finite element models that incorporated the uniform and quadrantal 
pressure distributions, meaning that both cases reasonably reproduced the in-situ wind 
effects. The boundary conditions of B1 to B3 and B6 revealed an average absolute error 
of 55.8% and 51.9% in comparison with the experimentally attained forces of Ft1 and Ft2, 

Fig. 7  Weibull distribution of wind speed: a Location 1; b Location 2; c Location 3; d Location 4; e Location 5; 
f comparison

Table 4  Probability of occurrence

WS1 to 5 = location of wind speed measurement

Probability (%) Wind speed (m/s)

WS1 WS2 WS3 WS4 WS5

20 4.78 6.21 3.53 3.26 6.08

40 5.72 7.15 4.29 4.25 7.20

60 6.48 7.87 4.87 5.10 8.09

80 7.33 8.67 5.59 6.12 9.12

99 9.16 10.28 6.97 8.49 11.18
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respectively; on the contrary, the conditions of B4, B5, B7, and B8 provided the error 
of 15.8% and 10.0% for Ft1 and Ft2, respectively. It is, thus, stated that partial fixities in 
the truss system were not significant and the conventional pin-roller connections at sup-
ports were found to be adequate. For this reason, the B5 condition with an average error 
of 9.9% for the Ft1 and Ft2 forces was taken for the model predictions discussed below.

4.3 � Effects of pressure distributions

Table 5 compares the implications of the uniform and quadrantal pressure distributions 
for the member forces. Despite the marginal deviation of these distributions from the 
experimental values, the uniform distribution outperformed the quadrantal one at an 
average accuracy level of 92% and 86%, respectively. As such, the uniform distribution 
was selected for the present truss analysis.

4.4 � Chord forces

The strain-based member forces of Ft1 and Ft2 are provided in Figs.  9(a) and (b), 
respectively. The scatter of these forces is ascribed to the stochastic nature of the 
wind. As in the case of characterizing the wind speeds, a normality test was carried 
out and their distribution was found to be Gaussian (Figs.  9(c) and (d)): the mean 
and standard deviation were − 0.86 kN and 0.44 kN for Ft1 and 1.11 kN and 0.75 kN 
for Ft2, respectively. Figures 10(a) and (b) display the Ft1 and Ft2 forces predicted by 
the random forest and finite element methods in conjunction with the predetermined 
occurrence probabilities of 20% to 99% (Table 6). These distinct approaches predicted 
close values; however, some discrepancies were noted possibly due to the fundamen-
tal uncertainties that took place in the field. Nonetheless, both of them were within a 
domain comprising the upper and lower limits of 95% and 5%, as visible in Figs. 10(c) 

Fig. 8  Predicted member forces under various boundary conditions: a Ft1; b Ft2

Table 5  Comparison of modeling approaches

Member Axial load (kN) Accuracy (%)

Exp. FEM 
(uniform)

FEM 
(quadrantal)

Random 
forest

FEM 
(uniform)

FEM 
(quadrantal)

Random 
forest

C1 −0.86 − 0.89 −0.83 − 0.88 97 96 98

C2 1.11 0.97 0.9 0.9 87 76 82
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Fig. 9  Chord forces: a Ft1; b Ft2; c normal distribution of Ft1; d normal distribution of Ft2

Fig. 10  Comparison of simulated forces: a Ft1; b Ft2; c limits for Ft1; d limits for Ft2
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and (d), corroborating the acceptable performance of random forest in relation to the 
traditional finite element model.

4.5 � System‑level response

For the expansion of the element-level investigations to system-level evaluations, 
five members (M1 to M5) and supports (J1 to J4) were selected (Fig.  11(a)) and their 
responses were examined under the Weibull-based wind load. Figure  11(b) clarifies 
that the experimental stress based on the wind recorded in the field was positioned in 
between the occurrence probabilities of 40% and 60%, representing a typical service situ-
ation. Beyond this load range, the member stresses appreciably increased up to 26.6 MPa 
at the probability of 99%. Regarding the support displacement in the longitudinal direc-
tion (Fig. 11(c)), the pinned supports (J2 and J4) did not move; conversely, the supports 
on the other side demonstrated asymmetric displacements, leading to the fact that the 
internal distribution of the wind was irregular.

Table 6  Distribution of wind loads

v = wind velocity; p = dynamic pressure of wind

Probability (%) Location Uniform distribution

v (m/s) p (Pa) Average p (Pa) Point load (kN)

20 1 4.78 21.89 23.27 0.07

2 6.21 36.94

3 3.53 11.93

4 3.26 10.19

5 6.08 35.37

40 1 5.72 31.33 32.94 0.10

2 7.15 48.95

3 4.29 17.62

4 4.25 17.26

5 7.20 49.56

60 1 6.48 40.20 41.93 0.12

2 7.87 59.23

3 4.87 22.72

4 5.10 24.85

5 8.09 62.64

80 1 7.33 51.43 53.75 0.16

2 8.67 71.97

3 5.59 29.88

4 6.12 35.89

5 9.12 79.58

99 1 9.16 80.36 83.32 0.24

2 10.28 101.15

3 6.97 46.53

4 8.49 69.03

5 11.18 119.51
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5 � Summary and conclusions
This paper has discussed the behavior of a historic truss bridge subjected to wind 
load. Random forest, a machine learning approach, and three-dimensional finite ele-
ment analysis were employed to examine the wind-induced responses of the 102-year-
old bridge. The data measured in the field were utilized for the training and validation 
of the modeling approaches. A parametric study was performed to figure out the 
ramifications of several attributes such as pressure types (uniform and quadrantal), 
boundary conditions (fixities), and wind speeds (probabilistic inference). The predict-
ability of the random forest and finite element models was comparable. The limita-
tion of the current model is stated that it was built upon service wind loadings and 
did not include irregular circumstances (e.g., gusts). In future research, variable wind 
speeds may be employed to generate technical information that can evaluate design 
approaches related to extreme conditions. The following conclusions are drawn:

•	 The wind speeds collected from the site conformed to a Weibull distribution and 
were represented by its two-parameter model. The magnitude of the wind was a 
function of geospatial conditions; specifically, the wind intensity ascended with an 
increase in the elevation of the sampling location.

•	 The degree of partial fixities was not significant in the historic truss system; hence, 
the intended boundary conditions imposed when it was initially designed were 
maintained. Even if the uniform and quadrantal pressure distributions generated 
similar structural responses at the member level, the former better simulated the 
in-situ wind characteristics.

Fig. 11  Member response: a labeled joints and members; b member stress; c support displacement in the 
longitudinal direction
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•	 Unlike the probability distribution of the wind speeds, the distribution of chord 
forces was Gaussian. The measured stress levels of the truss members were envel-
oped by those based on wind intensities between the occurrence probabilities of 40% 
and 60%. The irregular wind distributions resulted in the asymmetric behavior of the 
bridge supports.
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