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1  Introduction
With high strength to weight ratio, tube structures are widely used in various engineer-
ing structures, which are mainly fabricated from circular hollow section (CHS) mem-
bers by welding the brace members to the surface of the chord members, resulting in 
so-called tubular joints. When the tube structures are subjected to cyclic loads, fatigue 
cracks usually initiate from the surface of tubular joints due to high stress concentra-
tions and inherent welding defects. At present, stress-based methods and fracture 
mechanics-based methods are available for the fatigue life evaluation of welded joints 
(Wei et al., 2017, Qian et al., 2014). Because fatigue cracks always initiate from the weld 
toes in CHS welded joints, hot-spots stress (HSS) Shs–N curves were recommended by 
most of specifications to evaluate fatigue life of CHS joints. HSS includes all the stress 
concentration features of weld details, except those due to the local weld toe geometry. 
Stress Concentration Factors (SCFs) are generally applied to describe the HSS distribu-
tions of tubular joints, which are the ratio of HSS ranges to nominal stress ranges. SCFs 
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of tubular joints can be obtained by finite element analysis (FEA) or specimens testing. 
SCFs calculation formulas are always deduced by multiple regression analysis of design 
parameters of tubular joints. Lots of researches on SCFs of CHS joints were carried out 
and different SCFs calculation formulas were proposed since 1970s (Kuang et al., 1975, 
Ahmadi, 2016, Cheng et al., 2018). Some of these SCFs equations were recommended 
by different institutes, such as International Institute of Welding (IIW) (1999), Com-
mittee for International Development and Education on Construction of Tubular struc-
tures (CIDECT) (Zhao et al., 2000), American Petroleum Institute (API) (1993) and Det 
Norske Veritas (DNV) (2008) etc. To improve the fatigue performance of tubular joints, 
concretes are filled in the chords to form a concrete-filled steel tube (CFST) joints. At 
present, using design formulas of CHS joints, SCFs of CFST joints are generally deter-
mined by introducing equivalent thickness. In addition, several new SCFs calculation 
formulas have been proposed based on testing and FEA results for CFST T-joints (Tong 
et al. 2017, Xu et al., 2015), CFST N-joints (Kim et al., 2014) and CFST K-joints (Chen 
et  al., 2016). Also, experiments for CFST Y-joints were carried out and indicated that 
some well-established SCFs equations were consistent for braces, but very conservative 
for concrete filled chords (Yang et al., 2016).

As an important component of artificial intelligence (AI), artificial neural network 
(ANN) is a powerful tool for prediction of nonlinearities by simulate the biological struc-
ture of the human brain (Rafiq et al., 2001). In recent years, many types of ANN models 
have been proposed to solve complicated engineering problem. Neural network-based 
estimation of SCFs for steel multi-planar tubular XT-joints were proposed by Chiew 
et  al. (2001). Neural network-based evaluations of SCFs distributions at the Intersec-
tion of tubular X-joints were proposed by Choo et al (2007). Neural network-based SCFs 
assessment of a T-welded joint was carried out by Dabiri et al. (2017). A new formula-
tion of flexural over strength factor for steel beams by means of ANN was presented by 
Güneyisi et al. (2014). The shear strength predictions of steel-concrete composite struc-
tures based on ANN were investigated (Allahyari et al., 2018, Wei et al., 2016, Safa et al., 
2016). In addition to regression analysis and function approximation, ANNs are also 
applied to damage identification and fatigue life prediction. Dunga develops a robust 
method for crack detection using the concept of transfer learning as an alternative to 
training an original neural network (Dunga et al., 2019).

According to design specifications, very complicated equations are recommended to 
calculate the SCFs at the crown points and the saddle points in the intersection lines 
weld toe of CFST joints for individual load cases. In this paper, an alternative approach is 
presented to predict the SCFs distributions at the intersection of CFST Y-joints by back-
propagation neural network (BPNN).

ANN technique was used to simulate the relationships between basic variables and the 
SCFs in CFST joints. Based on the finite element analysis results, 300 training samples 
were used to train the BPNN prediction model and the parameters affecting the SCFs of 
CFST Y-joints under investigation. Well trained BPNN were used to evaluate the SCFs 
distributions at the intersections of CFST Y-joints subjected to three types of independ-
ent loadings, or combined loadings. By comparing the BPNN prediction results with the 
FEA results, it shows that the BPNN evaluations are feasible, and the prediction accu-
racy will improve with the increase of training samples.
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2 � SCFs distribution of CFST Y‑joints
2.1 � Influencing factors on SCFs of tubular joints

Specimen test results have shown that the higher stress concentration and the lower 
fatigue resistant of welded joints. As shown in Fig.1, CFST chord and CHS brace are 
connected in CFST Y-joints. The existing research results show that the SCFs of the 
CHS joints are related to some dimensionless parameters of the joints (Wei et  al., 
2018). For the Y-joints, the dimensionless parameters α, β, γ, τ and θ affecting the SCF 
of tubular joints. The specific geometric meaning is shown in Fig. 1.

It is commonly recognized that stress concentration is caused by stiffness change. 
The stress concentration behaviors and different stress items are illustrated in Fig. 2.

Fig. 1  the dimensionless parameters of CFST joint

Fig. 2  Stress of welded tubular joints
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In CFST trusses, truss member global stiffness, tubular joint stiffness and tubular wall 
local stiffness have effects on SCF of CFST joints. Chord and braces are joined by the 
intersection weld. The chord just like elastic basis for braces. The points on the intersec-
tion line of the chord have the same displacement because the axial stiffness of the brace 
is higher than that of the chord. Since the 1980s, many researches have been carried out 
on the SCFs of tubular joints through finite element methods, model tests and dimen-
sionless analysis, and the relationships between SCFs and design parameters were estab-
lished. IIW and CIDECT issued the fatigue design specification for tubular joints, and 
the recommended formulas for SCFs of the typical tubular joint were given.

2.2 � SCFs distribution of CHS Y‑joints and CFST Y‑joints

To investigate the local deformation and SCFs distributions of CHS Y-joints and CFST 
Y-joints, FE models were developed by using solid elements, as shown in Fig. 3(a). welds 
are simplified to a triangle based on the AWS D1.1 specification (2015), as shown in 
Fig. 3(b). In order to ensure the calculation accuracy, the size of the FE mesh near the 
weld is 2 mm. To improve the calculation efficiency, a larger mesh size is used in the area 
away from the weld.

In the FEA, the brace is subjected to axial force, and the two ends of the chord are set 
as fixed ends (Fig. 4). For the CFST joints, the contact and friction between the steel tube 
and the concrete are considered in the calculation. The material parameters and geomet-
ric parameters are shown in Table 1. The HSS was calculated by the surface extrapola-
tion method given by the IIW specification. Two or three extrapolation points are on the 
surface along the direction perpendicular to weld toe, and then the extrapolated point 
stresses are substituted into the recommended formulas to calculate the HSS at the weld 
toe.

When the brace is subjected to axial loads, global bending and local radial deforma-
tion are typically found in the chord in CHS joint, as shown in Fig. 5(a) and Fig. 6(a). 
The reaction force of the chord is non-uniform along the line of intersection, which var-
ies with the inconsistency in the stiffness distribution. Filling the chord with concretes 
changes the stiffness distributions of the tubular joint. As the bending stiffness of the 
chord increases, the bending deformation of the chord decreases as shown in Fig. 5(b). 
At the same time, since the radial deformation of the chord is restricted by the internal 
concrete, the radial stiffness of the chord increases, as shown in Fig. 6(b).

Fig. 3  Finite element model
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Compared with CHS joints, deformations along the brace axial are smaller on the 
crown points (root or toe) of the CFST joint. The rigidity of the crown point may be 
close to or even exceed the rigidity of the saddle point. The reacting force distribution 
on the chord is tend to be uniform, and the location of the maximum reacting force 
may change from the saddle to the crown. In addition, bending stress caused by chord 
wall local bending and additional stress caused by chord section radial deformation 
decrease significantly.

Based on FEA results, SCFs distributions of CHS Y-joint and CFST Y-joint were 
shown in Fig. 7. After the chord is filled with concrete, the distributions of SCFs of 
the chord and the brace have changed. The SCFs of CFST Y-joints are significantly 
smaller than those of CHS Y-joints. The position of the maximum SCFs changes from 

Fig. 4  Loads and boundary conditions

Table 1  FEM parameters

Parameters CHS Y-joints CFST Y-joints

Chord L/mm 5000 5000

D×T/mm 800×20 800×20

Brace l/mm 2200 2200

d×t/mm 480×16 480×16

Friction coefficient f _ 0.35

Dimensionless parameters θ/° 60 60

α 12.5 12.5

β 0.6 0.6

γ 20 20

τ 0.8 0.8

Q345qD (steel) Es/GPa 206 206

υs 0.3 0.3

C50 (Concrete) Ec/GPa — 34.5

υc — 0.2
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the saddle point in CHS Y-joint to a point between the crown toe and the saddle point 
in CFST Y-joint. The existing fatigue test results of the CFST joints show that the 
initial fatigue crack does not appear at the saddle point as the CHS joint, but starts 
somewhere near the crown toe and changes with the angle θ.

Fig. 5  Vertical deformation of chord

Fig. 6  Radial deformation of chord (mm)

Fig. 7  SCFs of tubular joints
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In most design specifications, the equivalent thickness is introduced. Considering 
the internal concrete is equivalent to the wall thickness of the chord, the SCFs of the 
grouting tubular joint are obtained according to the recommended formulas of the CHS 
joints. According to the CIDCT specification, the SCFs of the CHS joints and the CFST 
joints are calculated, as listed in Table 2. For the CHS joints, the results from the rec-
ommended formulas are in good agreement with the FEA results. For the CFST joints, 
there are significantly difference between the recommended formulas results and the 
FEA results. In addition, the recommended formulas can only give the SCFs of the sad-
dle point and the crown point and cannot distinguish the difference between the crown 
toe and the crown root, and cannot determine the maximum value of the SCFs. In short, 
the formulas proposed by the design specifications cannot be reliably used for the SCFs 
analysis of CFST joints.

3 � BPNN model
3.1 � Structure of BPNN

At present, research on machine learning and deep learning related technologies and 
their applications are getting more and more attention. As one of the basic algorithms of 
AI, ANN has become a research hotspot again. Based on multi-layer perceptron, ANN 
appeared in the 1940s to simulate several basic characteristics of human brain function, 
which is an adaptive nonlinear dynamic system composed of many simple basic compo-
nents (neurons). Since ANN have the ability to fit the nonlinear relationships between 
input variables and outputs variables, ANN have greatest potential in areas such as 
regression analysis, classification, pattern recognition and function approximation, etc. 
Although each processor in ANN maintains only one piece of dynamic information 
and only perform a few simple calculations, ANN can achieve self-learning by adjusting 
weights and biases. Among various types of architecture of ANN model, BPNN model is 
most widely used in the industry.

BPNN is a multi-layer feed forward neural network trained according to the error 
back propagation algorithm. A BPNN model always consists of at least three hier-
archical layers of neurons: an input layer, one or more hidden layers and an output 
layer. Every neuron in the input layer will send its output to every neuron in the hid-
den layers, and every neuron in the hidden layers will send its output to every neu-
ron in the output layer. The configuration of BPNN is shown in Fig. 8. The number 

Table 2  SCF on key points

Chord Brace

Crown
root

Crown
toe

Saddle
point

Max Crown
root

Crown
toe

Saddle
point

Max

CHS FEM 3.1 4.2 13.2 13.2 1.1 2.2 9.9 9.9

CIDECT 3.9 3.9 13.8 13.8 1.9 1.9 8.3 8.3

Relative error 25.8% -7.1% 4.5% 4.5% 72.7% -13.6% -16.2% -16.2%

CFST FEM 2.7 4.4 3.9 4.8 1.9 2.1 2.7 3.2

CIDECT 4.4 4.4 4.9 4.9 1.9 1.9 3.1 3.1

Relative error 63.0% 0.0% 25.6% 2.1% 0.0% -9.5% 14.8% -3.1%
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of neurons in the input layer is equal to the number of input variables. The number 
of neurons in the output layer is the same as the number of output variables. The 
number of neurons in the hidden layer can be varied based on the complexity of 
the problem and the size of the input information. BPNN model has some attractive 
features: Nonlinear mapping function from multiple input data to multiple output 
data can be automatically constructed by a trained network; the trained network has 
a feature of the so-called generalization; the trained network operates quickly in an 
application process.

The BPNN is trained by repeatedly importing a series of input/output data sets 
(samples) into the network. The network gradually learns the mapping relationships 
between inputs and outputs by adjusting the weights to minimize the error between 
the actual and the predicted output of the train sets. After the learning process is 
completed, network weight coefficients cannot be changed. In this model, it is nec-
essary to use a network with only forward calculation in pattern recognition and 
prediction, and the calculation can be performed very quickly.

3.2 � Learning and predicting of BPNN

BPNN have great advantages in dealing with problems in which many factors influ-
ence the process and result, and the process is poorly understood, and there are test 
data or analytical data. A flow chart to explain the learning and predicting process of 
BPNN is shown in Fig.9.

In a three-layer BPNN, The number of neurons in the input layer is n: xi=(x1,x2,…
xn). The number of neurons in the hidden layer is d: hj=(h1,h2,…hd). The number of 
neurons in the output layer is m: yk=(y1,y2,…ym). Wij is the weight of the connection 
between input layer neurons (i) and hidden layer neurons (j), θj is the bias of the hid-
den layer neurons (j). Wjk is the weight of the connection between hidden layer neu-
rons (j) and output layer neurons (k), θk is the bias of the output layer neurons (k).

Fig. 8  Structure of BPNN
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3.2.1 � Feed forward Algorithm

Hidden layer neurons:hj = f

(

n
∑

i=1

Wijxi − θj

)

Output layer neurons:yk = f
d

j=1

Wjkhj − θk

The error of output layer neurons can be expressed as:

Where tk is the desired output and yk is forecast output.

The total error of all sample is E, E =

P
∑

i=1

ei < ε , where P is the number of samples.

3.2.2 � Error Back Propagation

The error between output layer neurons and hidden layer neurons can be expressed 
as:

Thus, the weight between hidden layer neurons and output layer neurons need be 
updated as:

e =
1

2

m
�

k

�

tk − yk
�2
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
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)

Fig. 9  learning and predicting process of BPNNs
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Where n0 is the iterations number.
The bias of the output layer neurons need be updated as:

The error between input layer neurons and hidden layer neurons can be expressed as:

Thus, the weight between hidden layer neurons and input layer neurons need be updated 
as:

The bias of the hidden layer neurons need be updated as:

3.2.3 � Activation function

In order to improve the adaptability of neural networks for solving nonlinear prob-
lems, nonlinear activation functions are essential in neural networks. Sigmoid 
function, Tanh function and rectified linear unit (ReLU) function are always used 
in ANN. Different activation functions have different properties, so the activation 
function should be chosen reasonably based on the characteristics of the problem 
being solved. Different activation functions are compared in Fig. 10. Different acti-
vation functions are compared in Fig. 11.

The mathematical expression of the activation function and its derivation are 
shown in Table  3. The neural network is optimized with some form of gradient 
descent, so the activation function must be differentiable. When the value of the var-
iables are very large or very small, the derivatives of the Tanh function and the Sig-
moid function will be close to zero, which will cause the gradient of the weight to be 
close to zero. In this case, the gradient update is very slow, often referred to as gradi-
ent disappearance. ReLU function can improve the computational efficiency of ANN 
because of simple calculation and can solve the problem of gradient disappearance 
of Sigmoid function and Tanh function. It has been applied in ANN in recent years.

Wjk(n0 + 1) = Wjk(n0)+ η

P
∑

pi=1

δkhj

θk(n0 + 1) = θk(n0)+ η

P
∑

pi=1

δk

δj = hj
(

1− hj
)

m
∑

k=1

δkWjk

Wij(n0 + 1) = Wij(n0)+ η

P
∑

pi=1

δjxi

θj(n0 + 1) = θj(n0)+ η

P
∑

pi=1

δj
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Fig. 10  Activation function curve

Fig. 11  Derivation of activation function curve

Table 3  Activation function and derivation

Activation function f(x) f`(x)

Sigmoid f (x) = 1

1+e-x f (x) = e
−x

(1+e−x)
2

Tanh f (x) = e
x
−e

−x

ex+e−x
f (x) = 4

(ex+e−x)
2

ReLU
f (x) =

{

0 x < 0

x x > 0
f (x) =

{

0 x < 0

1 x > 0
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4 � SCFs prediction based on BPNN
Prediction of SCFs of CFST Y-joints has been a difficult task because of various factors 
affecting the stress distribution and their uncertainties. It has been commonly accepted 
that specimens test and FEA are the best ways to provide accurate SCFs predictions. 
Since specimen tests have been restricted by time and expense in spite of their reliability, 
more and more researchers use FEA to investigate the SCFs of CFST joints. There are 
relatively few studies on using ANN to predict the SCFs of CFST joints. In this study, to 
predict the SCFs along the brace-chord intersection of CFST Y-joints, a prediction pro-
gram based on BPNN was developed by using python computer language.

4.1 � BPNN for SCFs prediction of CFST Y‑joints

Including one hidden layer, a three-layer BPNN was establish, as shown in Fig.12. Com-
bining FEA results and existing research results, six key parameters were selected as the 
input layer units, and the SCFs of the brace and chord were taken as two output layer 
units. Besides the four dimensionless design parameters α、β、γ and τ, θ are used to 
describe the angle between the chord and the brace, and φ are used to locate different 
positions on the intersection weld by angle. φ=0, the point is crown root, and φ=π/2, 
the point is saddle point, and φ=π, the point is crown toe.

Generally, Neural networks with few hidden nodes cannot reflect small changes in the 
general trend of predicted responses. It is recommended by Patterson et al (1996) and 
Wythoff et  al (1993) to determine the number of hidden layers or hidden neurons by 
trial and error, that is, to begin with a small network and introduce new neurons and 
connections until performance is satisfactory. In this paper, ten neurons are included in 
hidden layer.

300 FEA results were collected as the training samples, the other 30 FEA results were 
used as target data to verify the accuracy of prediction program. In order to improve the 
learning efficiency and predictive ability of BPNN, it is necessary to normalize the input 

Fig. 12  BPNN for SCF prediction
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and output data by using simple linear algebraic equations before the training starts, and 
the input and output data are converted to between 0 and 1.

4.2 � SCFs prediction results

By learning the date from 300 FEA results, SCFs of CFST Y-joints were predicted by 
using BPNN. With the different activation functions, the error distribution between the 
FEA results and the BPNN predicted results are shown in Fig.13. Tanh activation func-
tion has better prediction accuracy. The prediction accuracy of chord is better than that 
of brace.

Based on the BPNN prediction results with Tanh activation function, columnar distri-
bution of the number of samples with different errors are shown in Fig. 14. The X-axis is 
the error level and the Y-axis is the predicted sample number. For SCFs of chord, more 
than 95% of BPNN prediction results are greater than FEA results and more than 90% of 
predictions with an error of less than 20%. For SCFs of brace, more than 95% of BPNN 
prediction results are greater than FEA results and nearly 80% of the predicted results 
with an error of less than 20%.

Fig.  15 shows the variation of the SCFs of CFST Y-joints with different input varia-
bles. Comparing the FEA results with the BPNN prediction results in Fig. 15 a), the SCFs 
trend with φ is in good agreement from crown root (φ=0) to crown toe (φ=180) when 

Fig. 13  Error distribution from BPNN prediction

Fig. 14  Error distribution from BPNN prediction with tanh function



Page 14 of 16Xiao et al. Advances in Bridge Engineering             (2022) 3:6 

α=12.5, β=0.6, γ=15, τ=0.8,θ=60, but the bimodal characteristics of the FEA results 
are not well reflected in the BPNN prediction results. Comparing the FEM results with 
the BPNN prediction results in Fig. 15 b), the SCFs trend with β is in good agreement 
when α=12.5, γ=20, τ=0.8, θ=60, φ=150. Comparing the FEA results with the BPNN 
prediction results in Fig. 15 c), the SCFs trend with γ is in good agreement when α=12.5, 
β=0.6, τ=0.8, θ=60, φ=150. Comparing the FEA results with the BPNN prediction 
results in Fig. 15 d), the SCFs trend with τ is in good agreement when α=12.5, β=0.6, 
γ=17.5, θ=60, φ=150.

5 � Conclusion

(1)	 Filling the chord with concrete changes the stiffness distribution of the tubular 
joints. As the bending stiffness and the radial stiffness of the chord increases, SCFs 
of CFST Y-joints are significantly smaller than those of CHS Y-joints.

(2)	 In CFST Y-joint, the rigidity of the crown points may be close to or even exceed the 
rigidity of the saddle point. The position of the maximum SCFs changes from the 
saddle point in CHS Y-joint to a point between the crown toe and the saddle point 
in CFST Y-joint.

(3)	 With six input layer units and two output layer units, a three-layer BPNN was 
establish, and it can be used to predict the SCFs distributions of chord and brace in 
CFST Y-joints after learning the date from 300 FEA results.

Fig. 15  SCFs of CFST Y-joints with different input variables
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(4)	 Compare with the other two activation functions, Tanh function has better predic-
tion accuracy. The prediction accuracy of chord is better than that of brace. More 
than 95% of BPNN prediction results are greater than FEA results and more than 
85% of predictions with an error of less than 20% based on Tanh function.

(5)	 Comparing the FEA results with the BPNN prediction results, the SCFs variation 
trends with different input variables are generally consistent, and the prediction 
accuracy of BPNN can be improved by increasing the number of training samples 
in the future. BPNN can be a reliable alternative to complicated SCFs equations for 
predicting SCFs distribution at intersection line of CFST Y-joints.
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