Skip to main content

Table 3 Coefficients of friction for bridge elastomeric bearings considering sliding

From: Effect of bonding or unbonding on seismic behavior of bridge elastomeric bearings: lessons learned from past earthquakes in China and Japan and inspirations for future design

Reference

Method

Contact surface

Coefficient of friction, μ

AASHTO (2014)

Specification

Elastomer-Concrete

0.20

Elastomer-Steel

0.20

Caltrans (2009)

Specification

Elastomer-Concrete

0.40

Elastomer-Steel

0.35

EN 1337-3 (2005)

Specification

Elastomer-Concrete

\( \mathsf{0.1}+\frac{\mathsf{0.9}}{{\mathsf{\sigma}}_{\mathsf{m}}} \)

Other Surfaces

\( \mathsf{0.1}+\frac{\mathsf{0.3}}{{\mathsf{\sigma}}_{\mathsf{m}}} \)

MHURDC (2011) and MTC (2008)

Specification

Elastomer-Concrete

0.15

Elastomer-Steel

0.10

MTC (2019)

Specification

Elastomer-Concrete

0.30

Elastomer-Steel

0.20

Schrage (1981)

Quasi-static

Elastomer-Concrete

\( \mathsf{0.18}+\frac{\mathsf{0.37}}{{\mathsf{\sigma}}_{\mathsf{m}}}\hbox{-} \frac{\sum {\mathsf{\delta}}_{\mathsf{u}\_\mathsf{slip}}}{\mathsf{100}} \)

Liu et al. (2006)

Quasi-static

Elastomer-Mortar

\( {\displaystyle \begin{array}{l}{\mathsf{6}}^{\hbox{-} \mathsf{6}}{\mathsf{v}}^{\mathsf{4}}\hbox{-} \mathsf{0.0002}{\mathsf{v}}^{\mathsf{3}}+\mathsf{0.0022}{\mathsf{v}}^{\mathsf{2}}\\ {}+\mathsf{0.0085}\mathsf{v}+\mathsf{0.1969}\end{array}} \)

Elastomer-Concrete

\( \mathsf{0.0044}{\mathsf{v}}^{\mathsf{2}}\hbox{-} \mathsf{0.0221}\mathsf{v}+\mathsf{0.2408} \)

Elastomer-Steel

\( {\displaystyle \begin{array}{l}{\mathsf{3}}^{\hbox{-} \mathsf{6}}{\mathsf{v}}^{\mathsf{4}}\hbox{-} {\mathsf{9}}^{\hbox{-} \mathsf{5}}{\mathsf{v}}^{\mathsf{3}}\hbox{-} \mathsf{0.0039}{\mathsf{v}}^{\mathsf{2}}\\ {}+\mathsf{0.0341}\mathsf{v}+\mathsf{0.2025}\end{array}} \)

Huang (2009)

Quasi-static

Elastomer-Steel

0.17–0.38

Shake-table

Elastomer-Steel

0.30

Fang (2012)

Quasi-static

Elastomer-Steel

0.10–0.26

Shake-table

Elastomer-Steel

0.27

Steelman et al. (2013)

Quasi-static

Elastomer-Concrete

0.25–0.50

Li et al. (2017)

Quasi-static

Elastomer-Steel

0.15–0.40

Xiang and Li (2017)

Quasi-static

Elastomer-Steel

\( {\displaystyle \begin{array}{l}\mathsf{1.09}{\mathsf{\sigma}}_m^{-0.59}\hbox{-} \\ {}\left(\mathsf{1.09}{\mathsf{\sigma}}_m^{-0.59}\hbox{-} \mathsf{1.02}{\mathsf{\sigma}}_m^{-0.72}\right){\mathsf{e}}^{\hbox{-} \mathsf{0.39}\mathsf{v}}\end{array}} \)

Xiang et al. (2018)

Shake-table

Elastomer-Steel

0.40

Wu et al. (2018)

Quasi-static

Elastomer-Steel

0.09–0.24

  1. σm is normal pressure on elastomeric bearings, δu-slip is cumulative slip displacement, and v is sliding velocity