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1  Introduction
1.1 � Literature review

With the evolution of mountainous bridges towards the direction of long-span and flex-
ibility, the wind sensitivity of these structures becomes increasingly significant (Tao 
and Wang 2023). In this context, wind loads have gradually become the dominant fac-
tor for the design of long span bridges in mountainous areas (Hu et al. 2020; Tang et al. 
2020). Generally, an accurate description of wind field characteristics at the bridge site 
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is critical for ensuring the operation safety of bridges. However, due to the influence of 
complex terrains and climatic conditions, it is difficult to explain wind field character-
istics in mountainous areas based on the current specification which is formulated to 
describe the conventional stationary wind field (Ren et al. 2021; Yu et al. 2018; Zhang 
et al. 2020; Liao et al. 2020). Therefore, it is urgently needed to perform the investigation 
of characteristics of near-ground wind fields in mountainous areas, thereby improving 
the wind resistance design level of long-span bridges in complex terrains.

Generally, wind speeds are mainly composed of two components, i.e., average wind 
speeds and wind fluctuations. Researches regarding these two components primarily 
focus on the distribution of average wind speeds, power spectrum of wind fluctuations 
and turbulence intensity (Yang et al. 2002; Zheng et al. 2019a, b; Wu et al. 2017; Wang 
et al. 2013). Among them, the distribution of average wind speeds has attracted increas-
ing attention, and commonly services for the structural strength design. Therefore, most 
of relevant explorations take extreme wind speeds (e.g., monthly maximum wind speeds 
or yearly maximum wind speeds) as the target sample to establish the corresponding 
probabilistic density function (PDF), thereby inferring the desired design wind speed 
(i.e., the basic wind speed). The commonly-used models regarding the wind speed dis-
tribution include Gumbel distribution (Simiu et  al. 2001), Weibull distribution (Wais 
2017), Rayleigh distribution (Chiodo and Noia 2020), Generalized Pareto Distribution 
(GPD) (Ding and Chen 2014), Gamma distribution (Özkan et al. 2020) and lognormal 
distribution (Kenfack et al. 2021), etc. For example, Zheng et al. (2019a, b) respectively 
employed three different distribution models (i.e., Gumbel distribution, Weibull distri-
bution and Frechet distribution) to fit the distribution of average wind speeds at the site 
of Aizhai bridge, and the result showed that the Gumbel distribution had the best fitting 
performance. Nage (2016) compared the fitting performance of Weibull distribution and 
Rayleigh distribution, concluding that the former exhibited superior fitting capability 
than that of the latter. Generally speaking, these above-mentioned distribution models 
involve in some critical parameters to be determined, and thus can be regarded as para-
metric models. Their fitting accuracy is closely related to the involved parameters. How-
ever, the corresponding parameter determination process requires a prior assumption 
regarding the distribution type which is difficult to be acquired beforehand in practice.

Compared with a large number of investigations on the distribution of extreme wind 
speeds, relatively few studies have been conducted on the distribution of parent wind 
speeds (i.e., samples of consecutive 10-min average wind speeds in a time period of 
interest), which is critical for the structural durability assessment (Repetto and Solari 
2010; Ding et  al. 2016). Because of the effect of the inner dependence of parent wind 
speeds, some of extreme wind speed distribution models cannot be directly applied in 
the fitting of parent wind speeds. Although Weibull distribution can be used to describe 
the distribution of parent wind speeds (Wais 2017), those before-mentioned problems 
in the parametric model still exist. As an effective nonparametric model, Kernel Density 
Estimation (KDE) can dispense with any parameter or distribution assumption in the 
modeling process, and has been successfully used in capturing the distribution of wind 
speeds (Nguyen et al. 2021; Chen and Duan 2018). However, this model can only cover 
a wide range of probability distributions from the data, and usually fails to reflect the 
probability distribution of wind speeds in two distribution tails (Takle and Brown 1978). 
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According to Ding and Chen (2014), the GPD model can provide an approximation 
description on the PDF of data above a selected high threshold not just the independ-
ent peaks (i.e., the distribution in the extreme part of parent wind speeds). Considering 
the advantage of GPD, the utilization of this model to describe the distribution of wind 
speeds over a pre-specified threshold may be promising.

It is worth noting that most of these above-mentioned distribution models can only 
describe the distribution of average wind speeds with the unimodal (i.e., single-peak) 
distribution characteristic. Affected by climatic factors such as temperature, humidity, 
atmospheric pressure and topography, the actual distribution of average wind speeds 
may present more complicated patterns, e.g., bimodal (i.e., double-peak), trimodal 
(i.e., threefold-peak) or even multimodal (i.e., multi-peak) distribution scenarios (Zhou 
et al. 2021). In this context, the accuracy of these distribution models is limited to some 
extent, and it is necessary to develop a mix form PDF to describe the complex average 
wind speed distribution in practice. Meanwhile, the information of wind direction is also 
critical for accurately describing the characteristic of wind fields, which is conducive to 
the refined analysis of structural wind-induced responses (Holmes 2020; Isyumov et al. 
2014; Carta et al. 2008; McWilliams et al. 1979). As is well-known, wind speeds at dif-
ferent directions in the same location exhibit a significant difference, and the difference 
of the structural scale at different directions is also remarkable, especially for that of 
long-span structures (e.g., bridges, high-rising buildings, transmission tower line system, 
etc.) (Zhu and Xu 2005; Xu and Zhu 2005). For example, the structural parameters (e.g., 
stiffness, damping ratio) and vibration performance of long-span bridges along-span 
direction and vertical-span direction are obviously different from each other. Hence, a 
reasonable description on the joint distribution of parent wind speeds and wind direc-
tion is the essential prerequisite for accurately describing the characteristic of wind 
loads, thereby realizing a reliable assessment of wind-induced fatigue damages.

Currently, there are mainly three methods for modeling the joint distribution of wind 
speed and direction including the stationary random process method, maximum wind 
direction coefficient method, and joint probability distribution method (Cook 2021). 
Among them, the joint probability distribution method is widely-used because of its 
simplicity and convenience (Wang and Gu 2009), and the corresponding wind direction 
models mainly involve conditional probability and von Mises distribution (Erdem and 
Shi 2011). For example, Xu et  al. (2009) estimated the buffeting-induced fatigue dam-
age of the Tsing Ma Bridge based on a continuous damage mechanics model where a 
combination of Weibull distribution and conditional probability model was established 
to capture the joint distribution of wind speed and wind direction. Zheng et al. (2019a, 
b) adopted the multiplication theorem to reveal the joint distribution of wind speed and 
wind direction in Dali area based on a large number of measured data, where von Mises 
distribution was introduced to describe the distribution of wind direction.

Inspired by the above literature reviews, the motivation of this study is to develop an 
innovative method for accurately describing the distribution of average wind speeds in 
mountainous areas, thereby providing a basis for the wind-induced structural durabil-
ity design. This method is the mix of nonparametric KDE and GPD, where KDE focuses 
on capturing the distribution in the main part of average wind speeds, while GPD aims 
to performing the distribution fitting of those in the extreme part. This mix method 



Page 4 of 20Cheng et al. Advances in Bridge Engineering            (2024) 5:16 

belongs to the semi-parametric model and can well cope with the actual wind speed dis-
tribution with the possible unimodal, bimodal or even multimodal distribution situa-
tions. Then, the commonly-used conditional probability model is introduced to capture 
the distribution of wind direction. Finally, a case study based on the measured 10-min 
average wind speeds at a mountainous bridge site demonstrates the superior perfor-
mance of the proposed method. The novelty of this study mainly embodies in the follow-
ing several aspects.

(1)	 A semi-parametric mix distribution model (the KDE-GPD distribution model) is 
proposed to describe the PDF of average wind speeds, which can simultaneously 
ensure that the function is continuous and derivable at the threshold point. Com-
pared with parametric models, this model involves fewer undetermined parame-
ters.

(2)	 The proposed method can well address the complex distribution of average wind 
speeds in practice including single-peak, double-peak, and even multi-peak sce-
narios. Case study based on the measured wind speed data in mountainous areas 
verifies its superiority.

1.2 � Organization of the paper

The organization of the study is presented as follows. In Section 2, details of the pro-
posed method are firstly presented. Then, the case study and the subsequent perfor-
mance analysis are displayed in Section 3. Finally, some main conclusions are drawn in 
Section 4.

2 � Materials and methods
2.1 � Study area

Figure 1 shows the overall layout of a certain mountain suspension bridge and its sur-
rounding topography is listed in Fig.  2. The structure of this bridge adopts a double-
tower single-span ground-anchored configuration. The total length of the bridge is 
1040 m, the span is 166 m + 628 m + 166 m and the rise-to-span ratio is 1/10 (Zhao et al. 
2020). The heights of tower on the left and right sides are 153 m and 138 m, respectively. 
In addition, the bridge has an altitude of 1,860 m and crosses a canyon with a depth of 
about 400 m. As can be seen from Fig. 2, the bridge runs from southwest to northeast, 
which is located in a mountainous area with complex terrain and climatic conditions, 
and significant topographic relief (e.g., including three deep canyons). The terrain on 
both sides of one of the deep canyons is very steep and V-shaped, running through the 
entire bridge site area. Therefore, the bridge is not only subject to the wind in the direc-
tion of this canyon, but also may be subject to the wind in the direction of the other 
two canyons (Huang et al. 2019). Obviously, these complex terrain and climatic condi-
tions mentioned above will inevitably cause the bridge to suffer from complex wind field 
effects during the service. In order to accurately grasp the wind vibration characteristics 
of the bridge, it is urgent to conduct a more in-depth study of the wind field characteris-
tics at the bridge site.
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According to Huang et al. (2019), it can be found that these topographic and climatic 
conditions at the bridge site are liable to produce typical mountain winds. In order to 
study the characteristics of the wind field, it is necessary to conduct wind field measure-
ment in mountainous areas. Based on the wind field measurement project, a wind speed 
observation tower with the height of 50 m is established on the slope near the left side in 
February 2013. The bottom elevation of the tower is 1890 m, and the height of all obser-
vation points is therefore above the height of the main beam (1860 m). Figure 3 shows 
the actual and schematic diagram of the anemometer layout at the observation point. 

Fig. 1  Diagram of the bridge layout

Fig. 2  Surrounding landforms of the bridge
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As shown in Fig. 3, the cup anemometer (NRG) and three dimensions (3D) ultrasonic 
anemometer (Young 81000) are used in the field measurement. Specifically, five NRG 
anemometers (marked by the red textbox in Fig. 3) are installed at the heights of 10 m, 
20 m, 30 m, 40 m, and 50 m, respectively. Three NRG wind indicators are installed at 
the heights of 10 m., 30 m, and 50 m, respectively. Meanwhile, two Young anemometers 
(marked by the blue textbox in Fig. 3) are respectively installed at the heights of 30 m 
and 50 m, respectively. In addition, the NRG hygrometer, barometer and thermometer 
are installed at the height of 8  m to obtain humidity, barometric pressure and tem-
perature, respectively. Figure 4 shows the wireless wind data acquisition system. More 
detailed description on the information of the field measurement can be found in Huang 
et al. 2015.

Due to the good data acquisition and transmission performance of the NRG anemom-
eter during the field measurement, the measured data recorded by the NRG anemom-
eter are used in this paper. Therefore, 10-min average wind speed and wind direction 
data for approximately 33 months from February 9, 2013 to October 16, 2015 are used 
as the experimental data. In addition, it is necessary to exclude the data with zero wind 
speed recorded in the field measurement during the analysis. On this basis, 139,979 sets 
of 10-min average wind speed and wind direction data are finally acquired to perform 
the subsequent investigation on the distribution of average wind speed and direction.

2.2 � KDE‑GPD distribution

The PDF distributions of random samples typically include parametric and non-parametric 
models. Unlike parametric models which require the assumption of distribution types or 

Fig. 3  Layout of anemometer
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some key parameters in advance, nonparametric models do not require any assumptions 
and have obvious data-driven attribute. With the continuous enrichment of data, the fit-
ting distribution of nonparametric models becomes closer to the true distribution situation 
(Jiang et al. 2020).

KDE is a good nonparametric model for estimating PDF. This model can not only better 
describe the probability distribution of a single variable (one-dimensional estimation), but 
also can establish the conditional probability among multiple variables (i.e., multidimen-
sional estimation) (Hyndman et  al. 1996). In this paper, one-dimensional kernel density 
estimation is used to reflect the distribution of the main part of average wind speeds, as 
follows.

Let {u} = (u1,u2, ...,uM) be an independent and identically distributed random variables, 
and then the probability density estimation function of KDE is given by (Jiang and Huang 
2017):

where, gKDE(u) is the PDF estimated via the KDE model; M is the number of samples; 
h’(h’ > 0) is the bandwidth parameter; and K (·) is a symmetric kernel function with the 
integration equal to one and has many possible choices (Epanechnikov 1969). There-
fore, the estimation result of KDE is closely related to the total number of samples M, 
the bandwidth parameter h’, and the kernel function K (·) . Typically, two types of kernel 
functions are used, i.e.,

(1)gKDE(u) =
1

Mh′

M

i=1

K (
u− ui

h′
)

(2)Gaussian kernel function: K (u) =
1√
2π

e
u2

2

(3)Epanechnikov kernel function : K (u) =
{

3× (1− u2)/4, |u| ≤ 1
0 |u| > 1

Fig. 4  The wireless transmission system
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Among them, Gaussian kernel function has advantages of smoothness and strict posi-
tive definiteness, and thus is adopted in this paper (Liu et al. 2022). Theoretically speak-
ing, the selection of bandwidth parameter and kernel function has some effect on the 
fitting performance (Hyndman et al. 1996). By contrast, the effect of bandwidth param-
eter is much more significant on the estimation result. For example, a larger bandwidth 
will reduce the proportion of actual data on the fitting curve, while a smaller one will 
lead to the increase of the corresponding proportion, thereby bringing out a steep fitting 
curve. This paper determines the bandwidth parameter based on the standard param-
eter determination criterion (Jiang et al. 2019; Zhang et al. 2014):

where σ̃ denotes the standard deviation of the target sample data.
Although the KDE model has the advantages such as high fitting accuracy and strong 

applicability, it can only describe the probability distribution of the main part of the data 
(Ding and Chen 2014). In comparison, the GPD model can better address the extreme 
value problem (Zhang and Chen 2015). Therefore, this study describes the probability 
distribution of the main part of average wind speeds based on the KDE model in the first 
place, and then employs the GPD model to fit the probability distribution of the extreme 
part of average wind speeds, and the specific modeling process is listed as follows:

Let (u1,u2, ...,uM , ...,un) be independent and identically distributed random variables, 
where the PDF distribution of (u1,u2, ...,uM) is described by the KDE model, and the 
probability density distribution of (uM+1,uM+2, · · ·,un) is captured by the GPD model. 
Among them, the cumulative distribution function FGPD(·) and the probability density 
function fGPD(·) of GPD are respectively defined as (Ding and Chen 2014):

in which xT is the threshold value; c and d are the model shape parameter and scale 
parameter, respectively, which can be estimated using the maximum likelihood estima-
tion (Holmes and Moriarty 1999). Then, the mix cumulative distribution function and 
probability density distribution function of KDE-GPD fU (u) is presented as follows:

where GKDE(u) is the cumulative distribution function estimated by the KDE model at 
u ≤ xT ; GKDE(xT ) is the cumulative probability value of GKDE(u) at u = xT , which can be 
expressed as GKDE(xT ) = M/n , M is the number of data when the wind speed u is less 
than or equal to the threshold xT and n is the number of all data.

From the above equation, it can be seen that the PDF being continuous at this thresh-
old point xT is the key to accurately obtaining the mix cumulative distribution function 

(4)h′ =
(

4σ̃ 5

3M

)

1
5

(5)

{

FGPD(u) = P(U ≤ u|U ≥ xT ) = 1− [1+ (c(u− xT )/d]−
1
c

fGPD(u) = 1
d
[1+ (c(u− xT )/d]−

1
c−1, c �= 0

(6)PU (u) =
{

GKDE(u) u ≤ xT
FGPD(u) · [1− GKDE(xT )] + GKDE(xT ) u > xT

(7)fU (u) =
{

gKDE(u) u ≤ xT
fGPD(u) · [1− GKDE(xT )] u > xT
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(Ragan and Manuel 2008). This paper determines the threshold value xT based on two 
methods, namely the threshold value xT1 based on the extreme value analysis of the 
wind turbine response (Luo et al. 2021):

where u is the mean value of the sample. The other threshold value xT2 is determined 
according to the Conditional Mean Excesses (CME) criterion (Harris 2005). If the data 
exceeding the threshold xT2 follows the GPD distribution, then for any data exceeding 
this threshold, there is a variable Yi = U − ui|U > ui| that also follows the GPD distri-
bution, and the mean value yi of Yi and ui − xT2 has the following linear relationship 
when xT2 is the initial point, i.e.,

Then the initial point of the linear relationship (i.e., xT2 ) can be considered as the 
threshold value. Therefore, the final threshold xT takes the maximum of the above two 
results, i.e.,

To ensure that the cumulative distribution function and the PDF are continuous at the 
threshold point xT , the function values of the PDF at the threshold point not only must 
be equal, but also their first derivative is equal at the threshold point, namely:

where g ′KDE(xT ) and f ′KDE(xT ) are the derivative values of gKDE(xT ) and fKDE(xT ) at the 
threshold point xT , respectively. Due to the use of Gaussian kernel function, the above 
equation can be changed to:

Therefore, in addition to satisfying the requirement of maximum likelihood estima-
tion, the parameters should also meet the requirement of Eq. (12), i.e., the determined 
parameters c and d should minimize the value of the variable Q:

(8)xT1 = u+ 1.4σ̃

(9)yi = E(U − ui|U > ui) = −
c(ui − xT2 + d/(1+ c)

(1+ c)

(10)xT = max(xT1, xT2)

(11)
gKDE(xT ) = [1− GU (xT )] · fGPD(xT );
g ′KDE(xT ) = [1− GU (xT )] · f ′GPD(xT )

(12)






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�
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in which m1 > 0;m2 > 0 . Finally, PU (u) and fU (u) can be obtained based on the deter-
mined parameters c, d, and xT . In summary, the KDE-GPD model can be considered as a 
semi-parametric mix model. Compared to parametric models, it typically requires fewer 
parameters. Therefore, this mix model may have a high practicality.

2.3 � Joint wind speed and direction distribution

Considering the directionality of the wind is significant for accurately calculating the 
buffeting response and fatigue damage of bridges (Wang and Gu 2009). This paper 
adopts the conditional probability model to describe the corresponding joint distribu-
tion of average wind speed and wind direction. In the conditional probability model, 
wind speed and wind direction are assumed to be mutually independent and the wind 
speed distribution is a conditional distribution with a fixed wind direction, while satisfy-
ing the following assumptions (Xu et al. 2009): (1) The distribution of wind speeds for 
any given wind direction obeys the KDE-GPD distribution; (2) The interdependence of 
wind distribution in different wind directions can be reflected by the relative frequency 
of occurrence of wind:

where PU ,�(u, θ) is the joint cumulative distribution function of wind speed and direc-
tion; fU ,�(u, θ) is the corresponding joint probability density function; fU |�=θ (u,ϑ[θ ]) 
is the probability density function of wind speeds in the wind direction θ(0 ≤ θ ≤ 2π) ; 
P�(θ) is the relative frequency of occurrence of wind in the wind direction θ ; f�(θ) is 
the wind direction probability density function; ϑ[θ ] is the parameter vector in the wind 
direction θ . In terms of KDE-GPD, ϑ[θ ] = [xT (θ), c(θ), d(θ), h′(θ)] . These parameters 
and the relative frequency of wind direction are fitted by the harmonic function (Xu 
et al. 2009).

3 � Results
3.1 � Result in full wind direction

To begin with, without considering the effect of wind direction i.e., the direction of 
all wind speeds is assumed to be completely consistent, statistical characteristics of 
all wind speed data are shown in Table 1. From the table, it can be seen that the aver-
age value, variance, skewness, and kurtosis of the data are 2.05 m/s, 1.69 m/s, 1.22, 

(13)

Q = S +m1

(

1

n

n
∑

i=1

(

A√
2πh′

)

−
1− GKDE(xT )

d

)2

+

m2

(

1

n

n
∑

i=1

(

A
ui − xT√
2πh

′3

)

+
1− GKDE(xT )

d2
(c + 1)

)2

S = log(d)(n−M) +
c + 1

c

n
∑

i=M+1

log

(

1+
c(ui − xT )

d

)

(14)PU ,�(u, θ) = P�(θ)

∫

fU |�=θ (u,ϑ[θ])du =
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fU ,�(u, θ)dudθ

(15)
fU ,�(u, θ) = fU |�=θ (u,ϑ[θ ])f�(θ);
P�(θ) =

∫ θ

0 f�(θ)dθ
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and 4.65, respectively. Obviously, these data feature a significant non-Gaussian char-
acteristic (Note that: the skewness and kurtosis of Gaussian distribution are equal to 
0 and 3, respectively). In order to illustrate the superiority of the KDE-GPD distribu-
tion model, the commonly-used Weibull distribution model is employed in this paper 
for the comparative study, and the corresponding results are shown in Fig.  5. From 
the figure, it can be seen that the wind speed distribution in all directions belongs 
to a typical single peak distribution. In Fig. 5, the histogram shows the distribution 
frequency of actual 10-min average wind speeds, the blue dot denotes the selected 
threshold value, the red dashed line stands for the fitting result of the Weibull distri-
bution, and the black solid line corresponds to the fitting result of the KDE-GPD dis-
tribution. By comparison, the KDE-GPD distribution model can better describe the 
distribution of the actual wind speeds than that of the Weibull distribution model, 
and the distribution function is smooth at the threshold point. The corresponding 
model parameters of the KDE-GPD distribution are h′ = 0.17;  c = 0.033;  d = 1.24

;  xT = 6.90 . Figure  6 shows the threshold of xT2 determined by the CME criterion 
where xT1 = 4.42 according to Eq. (8). Therefore, the final threshold xT  should be set 
as 6.90 based on Eq. (10).

Table 1  Statistical characteristics of 10-min average wind speed data (all wind directions)

Methods Mean Standard 
deviation

Maximum value Minimum value Skewness Kurtosis

Measured 2.05 1.69 13.10 0.40 1.22 4.65

KDE-GPD 2.01 1.67 13.02 0.38 1.20 4.66

Weibull 1.96 1.76 12.89 0.36 1.16 4.58

Fig. 5  Comparison of Weibull and KDE-GPD with the actual one (all wind directions)
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To further illustrate the performance of the KDE-GPD model, the overall wind 
speed range is divided by the interval �u = 2 m/s , and then seven different wind 
speed intervals are generated (Xu et  al. 2009). On this basis, the actual wind speed 
distributions and two probability distribution fittings (i.e., KDE-GPD and Weibull) 
in each interval are calculated, respectively, and the corresponding results are shown 
in Table 2. From the table, it can be seen that the main part of the wind speed data 
obtained by these two distributions is located in the interval [0 m/s, 8 m/s) , and the 
actual wind speed distribution is in good agreement with the fitting results of the 
KDE-GPD distribution model. Meanwhile, the probability of Weibull distribu-
tion is greater than that of KDE-GPD distribution in two extreme value intervals 
[0 m/s, 2 m/s) and [10 m/s, 14 m/s] , and the probability of distribution according to 
KDE-GPD is larger in the interval [2 m/s, 10 m/s) . Therefore, using the Weibull dis-
tribution for response analysis will not only overestimate the effect of the extreme 
part of wind speeds, but also underestimate the effect of the main part of the wind 
speed. Meanwhile, statistical characteristics estimated by KDE-GPD and Weibull are 

Fig. 6  The threshold selection based the CME criterion

Table 2  Probability distributions of Weibull and KDE-GPD in different wind speed intervals

Interval(m/s) 0–2 2–4 4–6 6–8 8–10 10–12

Weibull 0.65 0.26 0.075 0.019 4.40e-03 9.35e-04

KDE-GPD 0.56 0.30 0.111 0.021 5.50e-03 9.24e-04

Measured 0.55 0.31 0.110 0.021 5.49e-03 9.26e-04
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also given in Table 1. Obviously, KDE-GPD presents a better statistical approximation 
to the true results than the Weibull distribution.

3.2 � Result of considering directionality

In order to investigate the impact of wind direction, first of all, this section divides the 
wind speed according to the wind direction, and then fits the wind speed data in each 
wind direction. Theoretically, the narrower the wind direction partition is, the more 
accurate the results are obtained. However, too many partitions will not only increase 
the workload, but also are not conducive to the practical application. At the same time, 
when there is insufficient wind speed data, it will lead to insufficient data in each wind 
direction zone, which will make the fitting results significantly deviate from the actual 
situation. Generally, the reasonable number of wind partitions is set in the range of [8, 
16]. Figure 7 divides the wind direction into 16 sectors using �θ = 22.5◦ . 0◦ stands for 
the due north direction and the wind direction angle increases clockwise; "E, W, S, N" 
denotes due east, due west, due south and due north, respectively; The dashed line rep-
resents the wind direction corresponding to each sector, which is "N, NNE, NE, ENE, E, 
ESE, SE, SSE, S, SSW, SW, WSW, W, WNW, NW, NNW".

Figure  7 also shows the wind rose diagram obtained from the measured data at 
the bridge site divided into 16 sectors (i.e., the relative frequency of wind direction). 
Among them, the frequency of winds coming from the due east is significantly higher 
than that of the other directions. This wind direction can therefore be considered 
as the dominant wind direction. However, the wind speed data in this direction is 
mostly below 10  m/s. At the same time, it can also be observed that strong winds 
mainly come from two southwest directions (i.e., SSW and SW directions) with a 

Fig. 7  Wind direction division using the 16-sector
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maximum wind speed of 13.10 m/s (i.e., the SSW direction). In addition, Table 3 pro-
vides a description of the wind speed data characteristics within 16 sectors. Compar-
ing Tables 1 and 3, it can be seen that the wind speed characteristics in each direction 
differ significantly from the all-directional wind speed characteristics, and all of them 
exhibit certain non-Gaussian characteristics, especially in the NW direction which 
has the maximum skewness and kurtosis. This comparison contributes to examin-
ing the effectiveness and superiority of the KDE-GPD model in a comprehensive way. 
Table  4 in Appendix presents the annual cumulative frequency of wind speed and 
wind direction provided by the KDE-GPD distribution.

Based on the above zoning results, Fig.  8 shows the results of KDE-GPD param-
eters ϑ[θ ] for different wind directions. Since strong winds mainly occur in the SSW 
and SW directions, the thresholds are larger in these two directions. However, the 
scale parameter and shape parameter are not only related to the threshold, but also 
ensure that the mix function is continuous and derivable at the threshold point, as 
shown in Eq. (12). In addition, the value of the bandwidth parameter under each wind 
direction is related to the total amount of data in the corresponding direction and the 
standard deviation of the data, as shown in Eq. (3). The fitting regarding the relative 
frequency of wind direction and the parameter vector is performed via the harmonic 
function (Xu et al. 2009). Figure 9 displays the histogram of the relative frequency of 
wind direction (see Fig. 7) and the corresponding harmonic function fitting result.

Due to space constraint, Fig. 10 shows the fitting results based on Weibull distribu-
tion and KDE-GPD distribution in some typical directions where the goodness-of-fit 
results are also provided. As can be seen from Fig.  10, when considering the wind 
directionality, the distribution of wind speeds can be either unimodal or bimodal, i.e., 
the PDF with single-peak or double-peak. By comparison, the KDE-GPD distribution 
can better describe the actual wind speed data, and the goodness of fitting result is 

Table 3  Descriptions of wind speed data characteristics in some wind directions

Wind direction Average 
value (m/s)

Variance (m/s)2 Maximum 
value (m/s)

Minimum 
value (m/s)

Skewness Kurtosis

N 1.75 1.71 11.50 0.40 1.60 5.31

NNE 1.26 1.11 7.80 0.40 1.78 6.61

NE 1.35 0.97 7.10 0.40 1.31 4.95

ENE 2.07 1.35 8.60 0.40 0.74 3.23

E 2.47 1.55 10.50 0.40 0.36 2.42

ESE 1.38 1.10 6.40 0.40 1.18 3.78

SE 1.31 1.24 6.70 0.40 1.53 4.56

SSE 1.77 1.67 8.10 0.40 1.14 3.21

S 1.86 1.74 9.40 0.40 1.17 3.48

SSW 3.34 2.45 13.10 0.40 0.68 2.88

SW 4.13 2.56 12.70 0.40 0.26 2.39

WSW 2.42 1.62 8.90 0.40 0.35 2.29

W 2.28 1.82 12.20 0.40 0.77 3.37

WNW 1.19 1.26 10.30 0.40 2.04 7.73

NW 1.12 0.96 9.10 0.40 2.21 10.27

NNW 1.68 1.39 10.00 0.40 1.25 4.38
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Fig. 8  Parameters of KDE-GPD in different directions

Fig. 9  Harmonic fitting of relative frequency of wind direction
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also larger than that of Weibull distribution. This KDE-GPD distribution model can 
not only ensure an accurate description of the distribution of the main part of wind 
speeds, but also better reflect the distribution of the extreme part of wind speeds. It 
is worth stating that although occurrences of strong winds are infrequent, the fatigue 
damage under their effect is significant; On the other hand, the fatigue damage under 
the main part wind speeds is minimal, but its occurrences are more frequent. There-
fore, an accurate description of the wind speed distribution is critical for ensuring 
reliable wind-induced buffeting response calculation as well as its fatigue damage esti-
mation. In summary, the mix wind speed distribution model based on KDE-GPD still 
has a good fitting accuracy with the consideration of the impact of wind direction.

4 � Conclusion
In order to obtain the distribution of wind speed and direction for structural dura-
bility design (e.g., wind-induced fatigue analysis) in mountainous areas, this paper 
proposes a new mix distribution model based on the combination of nonparamet-
ric Kernel Density Estimation (KDE) and Generalized Pareto Distribution (GPD) for 
addressing the complex wind speed distribution. Then, the distribution of wind direc-
tion is described via the conditional probability model. Finally, the measurement of 
10-min average wind speeds at a mountainous bridge site is used as the experimental 
data to evaluate the performance of the proposed method. The main conclusions are 
as follows:

Fig. 10  Comparison of Weibull and KDE-GPD distributions with the actual one (considering wind directions)
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(1)	 A semi-parametric mix distribution model (the KDE-GPD distribution model) 
is proposed to describe the probability density function of parent average wind 
speeds, and the calculation method of model parameters is given. The mix model 
can simultaneously ensure that the function is continuous and derivable at the 
threshold point. In this model, the KDE model is used to fit the main part of wind 
speeds, while the GPD model is employed to describe the extreme part of wind 
speeds.

(2)	 According to the measured wind field characteristics in this mountainous area, it is 
found that when the wind directionality is not considered, the wind speed presents 
a significant single-peak distribution; and when considering the wind directionality, 
the wind speed distribution can exhibit a bimodal characteristic in some scenarios.

(3)	 Based on the analysis of measured wind speed samples with single and double 
peaks shows that the model proposed in this paper can better describe the distribu-
tion of wind speed and direction with different wind speed data characteristics, and 
its performance is obviously better than the commonly-used Weibull distribution 
model.

(4)	 The research in this paper can provide some references for guiding the analysis of 
engineering problems such as the probability distribution of wind speed in other 
regions for wind-induced fatigue of structures. However, the research is based on 
measured wind speed data in a mountainous area, and may not be entirely applica-
ble to other regions. Meanwhile, the influence of parameters and kernel functions 
should be estimated. Additionally, the distribution of wind direction also deserves 
further research using some advanced models (e.g., Von Mises or coupla model) for 
better showing the joint PDF of wind speed and direction.

Appendix

Table 4  Annual cumulative frequency of wind speed and wind direction (KDE-GPD)

Wind 
direction

0–2 (m/s) 2–4 (m/s) 4–6 (m/s) 6–8 (m/s) 8–10 (m/s) 10–12 (m/s) 12–14 (m/s) Total

N 1368 397 187 62 8 1 0 2023

NNE 1956 453 68 11 1 0 0 2489

NE 2582 725 54 4 0 0 0 3365

ENE 4225 3129 718 63 3 0 0 8138

E 5230 5355 2174 138 7 0 0 12905

ESE 3346 1112 139 3 0 0 0 4600

SE 2122 544 120 15 2 0 0 2802

SSE 1337 421 273 37 1 0 0 2068

S 1176 433 234 50 3 0 0 1896

SSW 838 705 542 257 104 17 2 2464

SW 555 559 665 390 150 28 2 2348

WSW 496 463 217 14 1 0 0 1191

W 582 365 213 23 4 1 0 1189
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Wind 
direction

0–2 (m/s) 2–4 (m/s) 4–6 (m/s) 6–8 (m/s) 8–10 (m/s) 10–12 (m/s) 12–14 (m/s) Total

WNW 891 174 54 4 1 0 0 1125

NW 1514 242 27 5 1 0 0 1788

NNW 1410 608 128 20 3 0 0 2169

Total 29627 15685 5811 1096 288 49 4 52560
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